Reference database and in silico primer design
A total of 16,514,108 available sequences were retrieved from both the NCBI and BOLD databases to construct the 'pcmDB'. This database encompassed 1,365,355 species across 91 phyla, 333 classes, 1,376 orders, 7,573 families, and 69,059 genera. The 'filter-pcmDB' dataset, comprising 658,711 sequences extracted from 'pcmDB', included 108,892 species belonging to 79 phyla, 272 classes, 1,044 orders, 4,510 families, and 21,886 genera. The 'filter-pcmDB-5p' dataset, specifically focusing on 5 target phyla, included 20,060 species from Chordata, 52,452 species from Arthropoda, 1,245 species from Echinodermata, 870 species from Platyhelminthes, and 2,664 species from Mollusca. Database information is presented in Table S1 After rigorous removal of sequences and positions containing gaps, the 'asfasta' file contained 30,158 sequences with an average length of 1,520 base pairs, which were used for the subsequent primer design steps.
Based on key properties and criteria in the primer design pipeline, 12 and 14 candidate primers were initially selected from 88 and 135 total primers for UP and CSP, respectively. Of these, only 8 primers (2 forward and 6 reverse) passed the GC clamp test for both primer design strategies. Most primers met the criteria for self-dimer formation, with the exception of reverse primer UPR.878 (which exhibited a maximum base pair overlap > 6). Subsequent hetero-dimer analysis identified two effective primer pairs for UP (UPF.22-UPR.880 and UPF.22-UPR.883) and three effective primer pairs for CSP (CSPF25-CSPR883, CSPF25-CSPR947, and CSPF25-CSPR950). Information about the primers through the in-silico design steps is presented in Table 2.
Table 2
In Silico designed primers for Universal and Chordata targets (PL: Primer length, Ident: Identity, Cov: Coverage, D: Degeneration).
| Primer ID | Primer sequence | PL | Iden. | Cov. | D | Tm | %GC | GC clamp | Self-dimer | Hetero-dimer | Amplicon length |
| ΔG (kcal/mol) | Max bp /No. structure | F-R primer | ΔG (kcal/ mol) | Max bp /No. structure |
| Universal primer (UP) 5’ – 3’ |
| UPF.22 | TCWACMAAYCAYAAAGAYATYGG | 23 | 0,86 | 1 | 64 | 51 | 30,43 | TRUE | -40.11 | 6(21) | | | | |
| UPR.883 | TCGKGTRTCWACRTCYATTCC | 21 | 0,85 | 1 | 32 | 52 | 42,86 | TRUE | -37.88 | 4 (17) | UPF22-883 | -40,1 | 5 (31) | 861 |
| UPR.878 | GTRTCSACRTCYATTCCSACSG | 22 | 0,85 | 1 | 64 | 50 | 40,91 | TRUE | -42.98 | 8 (25) | UPF22-878 | -42,98 | 4 (29) | 851 |
| UPR.880 | TCGKGTRTCWACRTCYATTCCWAC | 24 | 0,84 | 1 | 64 | 55 | 41,67 | TRUE | -42.45 | 4 (23) | UPF22-882 | -42.45 | 6 (31) | 858 |
| Chordata-specific primer (CSP) 5’- 3’ | |
| CSPF.25 | ACMAAYCAYAAAGAYATYGG | 20 | 0,89 | 1 | 32 | 54 | 45 | TRUE | -35.31 | 6(16) | | | | |
| CSPR.883 | TCGKGTATCWACATCYATTCC | 21 | 0,86 | 1 | 8 | 55 | 47,62 | TRUE | -36.68 | 4 (16) | CSPF25-883 | -36.68 | 5 (23) | 858 |
| CSPR.947 | ARTCAACTAAATACTTTSACSC | 22 | 0,88 | 1 | 8 | 50 | 31,82 | TRUE | -37.02 | 5 (15) | CSPF25-947 | -37.02 | 5 (28) | 922 |
| CSPR.950 | ARTCAACTAAATACTTTSACSCC | 23 | 0,89 | 1 | 8 | 53 | 34,78 | TRUE | -40.9 | 5 (15) | CSPF25-950 | -40.09 | 5 (29) | 925 |
The total number of on- and off-target matches for optimized UP primer pairs across available target phyla (Fig. 1) showed that UPR.880 had fewer off-target matches than UPR.883 (52,737 ± 24,185 (9,410 − 165,427) vs. 96,311 ± 28,725 (32,311–217,193), and a similar number of on-target matches (250,692 ± 51,060 (25,379 − 352,293) vs. 283,682 ± 36,420 (136,305–363,139). UPR.883 targeted the highest number of phyla and species (66 and 60,953, respectively), followed by UPF.25 (64 and 30,543), while UPR.880 targeted the fewest (61 and 58,724). All primers had a matching ratio greater than 50%. For CSP, all primers exceeded the 70% matching rate threshold, exhibiting minimal variation in the number of targeted species (ranging from 17,725 to 17,794) (Supplement S2). While all primers satisfied the selection criteria, the UPF.22/UPR.880 and CSPF.25/CSPR.950 primer pairs were chosen for subsequent analysis due to their larger predicted amplicon sizes.
Figure 2 compares the performance of the newly designed primers with eight published primers (three universal and five specific). Amplicon size predictions (based on primer placement within the COI mtDNA gene segment) demonstrate that the novel primers encompass the amplification range of all existing primers (Fig. 2A). While the newly designed UP primers exhibit a low index (indicating high degeneracy), their sequence similarity is comparable to, or greater than, existing primers (numbered 3,4), particularly within the Arthropoda and Chordata phyla (Fig. 2B). A lower efficiency observed in Platyhelminthes is likely attributable to the limited number of available sequences for this phylum. Among five primer pairs compared, the CSP pair exhibited sequence similarity greater than or equal to that of three other primer pairs (numbered 6–8, Fig. 2C). For the two degenerate primers (8–9), the CSP pair had a higher primer index and sequence similarity equivalent to that of primer 9 (which was primarily designed for fish) (Fig. 2C).
The specificity of the designed-UP primer pair and the compared primer pairs for target and non-target phyla is shown in Fig. 3. Most primers exhibited near-expected (50% matching) values for non-target phyla, while target phyla showed higher observed values. Phyla with minimal sequence matching (< 5%, indicated by red points) were observed for all primer pairs, but the proportion of these phyla was lower for the degenerate primers. While all compared forward primers exhibited < 10% non-target phyla matches (reverse primers ≥ 39%), both new designed universal primer pairs met the required matching rate (10% and 23%, respectively).
Morphological identification
As previously noted, morphological analysis focused exclusively on planktonic samples. Because these specimens were primarily larvae (except for Chordata, which consisted mainly of Actinopterygii ichthyoplankton), identification for both target and non-target phyla was generally limited to the class or family level. Species identified are marked with an asterisk (*) in Table 3, and include Copepods, Gastropod snails, Sagittoidea (arrow worm), and Hydrozoa (small jellyfish). Their external morphologies are shown in Fig. 4, and morphological descriptions are presented in Table S2. Ichthyoplankton specimens, representing a broad range of taxonomic levels (detail morphological description not showed), were applied to compare the efficacy of DNA barcoding and traditional morphology-based identification (Figure S1). Representative images of early developmental stages (eggs and larvae) with further details provided in Figure S2.
Table 3
Species composition and PCR amplification efficiency using Universal and Phylum-specific primers
| No | Phylum/Class | Orders | PCR reaction | Successful rate (%) | Genbank/BOLD identity (%) |
| A | Universal primer (UPF.22 – UPR.880) – Target phyla | 43 | 90.69% | |
| I | Chordata | | 13 | 100 | |
| 1.1 | Aves | Apodiformes (Aerodramus fuciphagus) | 3 | 3 | 99.08 |
| 1.2 | Mammalia | Primates (Homo sapiens) | 2 | 2 | 100 |
| 1.3 | Actinopterygii | Blenniiformes (Omobranchus fasciolatoceps Parablennius thysanius Plagiotremus tapeinosoma ) | 3 | 3 | 99.88 98.89 99.85 |
| Acanthuriformes (Leiognathus berbis Photolateralis stercorarius Photopectoralis bindus ) | 3 | 3 | 100 100 99.76 |
| 1.4 | Elasmobranchii | Myliobatiformes (Pteroplatytrygon violacea) | 1 | 1 | 99.99 |
| Rhinopristiformes (Rhinobatos jimbaranensis) | 1 | 1 | 99.98 |
| 1.5 | Reptilia | Testudines (Indotestudo elongata) | 1 | 1 | 99.87 |
| II | Arthropoda | | 10 | 100 | |
| II.1 | Crustacean | Decapoda (Panulirus homarus) | 2 | 2 | 99.4 |
| II.2 | Thecostraca | Rhizocephala (Sacculina angulata) | 1 | 1 | 98 |
| Scalpellomorpha (Octolasmis angulata) | 1 | 1 | 98.27 |
| II.3 | Malacostraca | Amphipoda (Amphipoda sp.) | 1 | 1 | 97 |
| II.4 | Copepoda | Calanoida (Canthocalanus pauper)* | 1 | 1 | 98 |
| Harpacticoida (Normanellidae sp.) | 1 | 1 | 80 |
| II.5 | Insecta | Hymenoptera (Oecophylla smaragdina) | 1 | 1 | 99.8 |
| Diptera (Kiefferulus longilobus) | 1 | 1 | 98.69 |
| Coleoptera (Mesosa sp.) | 1 | 1 | 89 |
| III | Mollusk | | 7 | 85.71 | |
| III.1 | Cephalopoda | Sepiida (Sepiola sp.)* | 1 | 1 | 91 |
| III.2 | Gastropoda | Littorinimorpha (Linatella caudata)* | 1 | 1 | 100 |
| Neogastropoda (Babylonia areolata) | 1 | 1 | 98.5 |
| III.3 | Bivalvia | Pterioida (Pinna atropurpurea) | 3 | 2 | 99.83 |
| Arcida (Barbatia sp.) | 1 | 1 | 91.79 |
| IV | Echinodermata | | 6 | 83.33 | |
| IV.1 | Asteroidea | Valvatida (Nardoa variolata) | 2 | 2 | 98.2 |
| IV.2 | Holothuroidea | Holothuriida (Holothuria fuscogilva Holothuria atra Holothuria hilla) | 4 | 3 | 99.9 99.8 97.9 |
| V | Platyhelminthes | | 7 | 57.14 | |
| V.1 | Trematoda | Plagiorchiida (Haplorchis taichui Centrocestus_formosanus Allocreadium sp.) | 5 | 3 | 99.2 97.3 91 |
| V.2 | Monogenea | Mazocraeidea (Thaparocleidus sp.) | 2 | 1 | 92 |
| B | Universal primer (UPF.22 – UPR.880) - Cross amplification | 8 | 75 | |
| I | Acanthocephala / Polyacanthocephala | Polyacanthorhynchida (Polyacanthorhynchus sp.) | 1 | 1 | 92 |
| II | Nematoda/ Chromadorea | Rhabditida (Raphidascaris trichiuri) | 1 | 1 | 98.9 |
| III | Cnidaria/ Anthozoa | Actiniaria (Heteractis aurora) | 1 | 1 | 98.2 |
| | Cnidaria/ Hydrozoa | Tiaropsidae (Tiaropsis sp.)* | 2 | 1 | 95.3 |
| IV | Chaetognatha/ Sagittoidea | Aphragmophora (Zonosagitta bedoti)* | 1 | 1 | 99.9 |
| V | Annelida/ Polychaeta | Dinophilidae (Dinophilus sp.) | 2 | 1 | 90 |
| | Order/Family | Species | PCR reaction | Successful rate (%) | Genbank/BOLD identity (%) |
| C | Chordata specific primer (CSPF.22 – CSPR.950) – Ichthyoplankton case study | 179 | 94.97 | |
| 1 | Acanthuriformes Leiognathidae Leiognathidae Leiognathidae | Leiognathus berbis Photolateralis stercorarius Photopectoralis bindus | 9 | 9 | 100 100 100 |
| 2 | Acropomatiformes Pempheridae Trichonotidae | Pempheris schwenkii Ophichthidae sp. | 3 | 3 | 99.8 93.6 |
| 3 | Anguilliformes Muraenidae Ophichthidae | Gymnothorax buroensis Callechelys sp. | 3 | 3 | 99 91.08 |
| 4 | Aulopiformes Synodontidae | Synodus dermatogenys Saurida microlepis Trachinocephalus myops | 13 | 12 | 99 98.9 99.2 |
| 5 | Blenniiformes Blenniidae | Gerres sp. Omobranchus fasciolatoceps Parablennius thysanius Plagiotremus tapeinosoma | 10 | 10 | 82 99.88 98.89 99.85 |
| 6 | Callionymiformes Callionymidae | Callionymus sp. Callionymus meridionalis Callionymus schaapii | 9 | 9 | 97 99.76 99.81 |
| 7 | Carangiformes Carangidae | Alepes kleinii Selaroides leptolepis Megalaspis cordyla | 8 | 8 | 99.52 100 98.5 |
| 8 | Clupeiformes Dorosomatidae Engraulidae Engraulidae Engraulidae Engraulidae | Sardinella fijiensis Encrasicholina heteroloba Encrasicholina punctifer Stolephorus insularis Thryssa hamiltonii | 38 | 36 | 99.76 100 99.08 99.85 99.76 |
| 9 | Eupercaria incertae sedis Caesionidae Labridae Nemipteridae Nemipteridae Nemipteridae Nemipteridae Scaridae Sciaenidae Sillaginidae Sparidae | Pterocaesio digramma Halichoeres nigrescens Nemipterus furcosus Nemipterus japonicus Pentapodus setosus Scolopsis taenioptera Scaridae sp. Johnius carouna Sillago sihama Sparus aurata | 28 | 26 | 100 99.65 100 99.85 100 99.85 81 98.97 99.53 100 |
| 10 | Gobiiformes Gobiidae Gobiidae Gobiidae Oxudercidae | Acentrogobius sp. Boleophthalmus pectinirostris Gobiidae sp. Oxuderces dentatus | 18 | 17 | 92 99.76 84 98.89 |
| 11 | Mugiliformes Mugilidae | Osteomugil sp. Planiliza macrolepis Crenimugil buchanani | 4 | 4 | 90 99.27 99 |
| 12 | Ophidiiformes Bythitidae Aphyonidae | Bythitidae sp. Mugilidae sp. | 3 | 2 | 84.92 94.5 |
| 13 | Ovalentaria incertae sedis Pomacentridae Pomacentridae Ambassidae | Abudefduf bengalensis Neopomacentrus bankieri Ambassis gymnocephalus | 12 | 11 | 99.65 100 99.9 |
| 14 | Perciformes Scorpaenidae Serranidae Platycephalidae Pinguipedidae Platycephalidae | Parascorpaena aurita Epinephelus bleekeri Thysanophrys celebica Parapercis filamentosa Sorsogona tuberculata | 5 | 5 | 99 99.2 99.7 98.4 99.2 |
| 15 | Pleuronectiformes Cynoglossidae Cynoglossidae Soleidae Soleidae | Cynoglossus nanhaiensis Cynoglossus sp. Heteromycteris japonicus Zebrias quagga | 7 | 8 | 99.53 99.54 99.9 99.4 |
| 16 | Scombriformes Trichiuridae Trichiuridae Trichiuridae Scombridae | Trichiurus brevis Rastrelliger brachysoma Lepturacanthus savala Mastacembelidae sp. | 5 | 4 | 99.76 99.8 98.9 93.1 |
| 17 | Tetraodontiformes Monacanthidae | Acreichthys tomentosus Monacanthus chinensis Paramonacanthus choirocephalus | 4 | 3 | 97 98.2 98.7 |
Primer application testing
Overall, both newly designed primer pairs achieved amplification success rates > 90% (Table 3). Universal primers demonstrated high efficiency across four of the five target phyla. Chordata (five classes) exhibited a 100% success rate, with > 99% identity of species correctly identified. Arthropoda (five classes) also achieved a 100% success rate, though three species remained unidentified (< 97% sequence similarity). A planktonic copepod was successfully identified (Canthocalanus pauper, 98% sequence similarity). Mollusca and Echinodermata (three and two classes, respectively) achieved success rates of 85.71% and 88.83%. While all Echinodermata specimens were successfully identified (98% sequence identity), two Mollusc species, including planktonic squid larvae (Sepiola sp.), could not be identified. However, the snail was successfully identified (Linatella caudata, 100% identity). Consistent with in-silico analysis, Platyhelminthes exhibited the lowest success rate (57.4%), with two of four species unidentifiable to the species level. Cross-application tests involving nine species from five phyla achieved a success rate greater than 75%. While six species were successfully identified, three remained unidentified at the species level. These included planktonic larvae of a small jellyfish (Tiaropsis sp., 95.3% sequence identity). Arrowworm, however, were successfully identified as Zonosagitta bedoti (> 99% sequence identity).
The Chordata-specific primer pair proved effective in the ichthyoplankton case study, yielding a 94.97% amplification success rate. While most species were successfully identified, 10 of the 63 species showed sequence identities between 81% and 97% and could not be definitively identified. This difficulty was largely attributable to two issues: a scarcity of reference sequences in public databases and the presence of sequences matching an unidentified (ex. Callionymius sp. 97%, Cynoglossus sp. 99.54% sequence identity).
Ichthyoplankton -Morphological identification versus DNA barcoding
Table 4 compares species identifications using morphology and COI mtDNA barcoding. COI accurately identified 25 of 30 taxa. Sensitivity (concordance between morphology and COI) reached 100% (4/4) when COI identified specimens only to the class Actinopterygii, but dropped to 25% for Gobiidae sp. and Drombus sp., where both methods disagreed. Specificity ranged from 50–100%, highest with accurate molecular identification and lowest when morphology was more reliable. Morphological identification was often limited to higher taxonomic levels (unidentified, order, or family). Species-level identification was possible when COI data were unavailable and taxonomic keys existed for common species (e.g., Gerres decacanthus, Callechelys marmorata).
Table 4
Comparison of parameters between morphological identification methods and DNA barcodes using COI mtDNA markers with designed CSP primer pairs (* taxa identification false by mtDNA barcode)
| Sample ID | Species identification | Devel. Stages | No. Samples | Morph. Ident. True | Morph. Ident. False | mtDNA Ident. False | Sen. (%) | Spe. (%) | PPP (%) | NPP (%) | False Ident. Egg | False Iden. Larvae |
| 1 | Stolephorus insularis | E2-6 | 26 | 21 | 5 | 0 | 80.8 | 100 | 100 | 50 | Dorosomatidae (2) E. heteroloba (3) | |
| PrFL | 6 | 4 | 2 | 0 | 66.7 | 100 | 100 | 50 | | E. heteroloba (2) |
| 2 | Photopectoralis bindus | E2,E4 | 22 | 6 | 16 | 0 | 27.3 | 100 | 100 | 50 | Perciformes (3) Eupercaria incertae sedis (2) Acanthuridae (4), Ephippidae (2), Leiognathidae (3) Unidentified (2) | |
| 3 | Ambassis gymnocephalus | E3-6 | 9 | 3 | 6 | 0 | 33.3 | 100 | 100 | 50 | Mugiliformes (1) Mugilidae (2) Ambassidae (1) Unidentified (2) | |
| FL- PoFL | 11 | 4 | 7 | 0 | 36.4 | 100 | 100 | 50 | | Perciformes (2) Sciaenidae (3) Ambassis sp. (2) |
| 4 | Sillago sihama | E5-6 | 11 | 3 | 8 | 0 | 27.3 | 100 | 100 | 50 | Eupercaria incertae sedis (3) Mugiliformes (1) Nemipteridae (2) Unidentified (2) | |
| FL-PoFL | 7 | 2 | 5 | 0 | 28.6 | 100 | 100 | 50 | | Scombridae (2) Gobiidae (1) Sillago sp. (2) |
| 5 | Sardinella fijiensis | E5,E6 | 16 | 6 | 10 | 0 | 37.5 | 100 | 100 | 50 | Clupeiformes (1) Dorosomatidae (2) S. gibosa (7) | |
| 6 | Encrasicholina punctifer | E3-6 | 15 | 10 | 5 | 0 | 66.7 | 100 | 100 | 50 | | Stolephorus insularis (2) E. heteroloba (3) |
| 7 | Scolopsis taenioptera | E3,E4 | 14 | 2 | 12 | 0 | 14.3 | 100 | 100 | 50 | Perciformes (5) Nemipteridae (1) Dorosomatidae (1) Nemipterus sp. (3) E. heteroloba (4) Unidentified (3) | |
| 8 | Omobranchus fasciolatoceps | FL | 12 | 3 | 9 | 0 | 25 | 100 | 100 | 50 | | Blenniidae (6) Gobiidae (2) Omobranchus sp. (1) |
| 9 | Alepes kleinii | E4,E5 | 4 | 1 | 3 | 0 | 25 | 100 | 100 | 50 | Carangiformes (2) Unidentified (1) | |
| FL | 8 | 2 | 6 | 0 | 25 | 100 | 100 | 50 | | Coryphaenidae (2) Carangidae (3) Ambassidae (1) |
| 10 | Encrasicholina heteroloba | E4-6 | 12 | 4 | 8 | 0 | 33.3 | 100 | 100 | 50 | E. puncifer (4) E. pseudoheterobola (1) S. insularis (3) | |
| 11 | Boleophthalmus pectinirostris | PrFL-FL | 12 | 3 | 9 | 0 | 25 | 100 | 100 | 50 | | Blenniiformes (3) Blenniidae (3) Gobiidae (3) |
| 12 | Pterocaesio digramma | E3 | 11 | 1 | 10 | 0 | 9.1 | 100 | 100 | 50 | Acanthuriformes (4) Eupercaria incertae sedis (2) Nemipteridae (1) Unidentified (3) | |
| 13 | Synodus dermatogenys | E4,E5 | 9 | 4 | 5 | 0 | 44.4 | 100 | 100 | 50 | Synodontidae (2) Trachinocephalus (2) Synodus sp. (1) | |
| 14 | Leiognathus berbis | E3,E5 | 8 | 2 | 6 | 0 | 25 | 100 | 100 | 50 | Eupercaria incertae sedis (2) Acanthuridae (2) Leiognathidae (2) | |
| 15 | Trachinocephalus myops | E4 | 8 | 1 | 7 | 0 | 12.5 | 100 | 100 | 50 | Synodontidae (3) Synodus sp. (4) | |
| FL | 3 | 0 | 3 | 0 | 0 | 100 | 0 | 50 | | Perciformes (2) Scombridae (1) |
| 16 | Photolateralis stercorarius | E5 | 7 | 2 | 5 | 0 | 28.6 | 100 | 100 | 50 | Acanthuridae (3) Anguilliformes (2) | |
| 17 | Gerres sp. G. decacanthus | E6 | 6 | 2 | 4 | 1 | 33.3 | 83.3 | 66.7 | 55.56 | Acanthuriformes (2) Labridae (2) G. decacanthus (1)* | |
| 18 | Monacanthus chinensis | PoFL | 4 | 0 | 4 | 0 | 0 | 100 | 0 | 50 | | Perciformes (1) Monocanthidae (1) Acreichthys sp. (2) |
| 19 | Johnius carouna | FL | 6 | 2 | 4 | 0 | 33.3 | 100 | 100 | 50 | | Ambassidae (3) Sparidae (1) |
| 20 | Oxuderces dentatus | PrFL-FL | 6 | 0 | 6 | 0 | 0 | 100 | 0 | 50 | | Scombridae (2) Sciaenidae (1) Gobiidae (3) |
| 21 | Mugilidae sp. Mugil sp. | E3,E4 | 6 | 2 | 4 | 1 | 33.3 | 83.3 | 66.7 | 55.56 | Acanthuriformes (1) Mugiliformes (2) Unidentified (1) Mugil sp. (1)* | |
| 22 | Callechelys sp. C. marmorata | E3,E4 | 5 | 2 | 3 | 1 | 40 | 80 | 66.7 | 57.14 | Ophichthidae (2) Yirrkala sp. (1) C. marmorata (1)* | |
| 23 | Gobiidae sp. Drombus sp. | FL-PoFL | 4 | 1 | 3 | 1 | 25 | 80 | 50 | 57.14 | | Scombriformes (2) Scombridae (1) Drombus sp. (1)* |
| 24 | Neopomacentrus bankieri | PrFL | 5 | 1 | 4 | 0 | 20 | 100 | 100 | 50 | | Sparidae (2) Pomacentridae (2) |
| 25 | Gymnothorax buroensis | E3 | 4 | 0 | 4 | 0 | 0 | 100 | 0 | 50 | Anguillidae (2) Unidentified (2) | |
| 26 | Parablennius thysanius | PrFL | 5 | 1 | 4 | 0 | 20 | 100 | 100 | 50 | | Blenniidae (2) Gobiidae (2) |
| 27 | Actinopterygii Triglidae Cepolidae Callionymidae | FL-PrFL | 4 | 4 | 0 | 4 | 100 | 50 | 50 | 100 | | Triglidae (1)* Cepolidae(1)* Callionymidae (2)* |
| 28 | Pentapodus setosus | E2 | 5 | 1 | 4 | 0 | 20 | 100 | 100 | 50 | Eupercaria incertae sedis (2) Pleuronectiformes (1) Unidentified (1) | |
| 29 | Creediidae sp. | FL | 4 | 0 | 4 | 0 | 0 | 100 | 0 | 50 | | Mastacembelidae (2) Gobiidae (2) |
| 30 | Sparus aurata | E6 | 4 | 0 | 4 | 0 | 0 | 100 | 0 | 50 | Clupeiformes (2) Sparidae (1) Escualosa sp. (1) | |
Morphological accuracy decreased at the egg stage for some species. For instance, Sillago sihama identification fell from 28.6% (larvae) to 27.3% (eggs). Challenges also arose at the larval stage, highlighting difficulties in morphological classification, particularly at early life stages. COI accuracy remained relatively consistent across developmental stages.
These findings demonstrate the value of both methods for ichthyoplankton identification, but underscore the risk of misidentification, especially with single markers or morphological traits. The reduced egg-stage accuracy of morphology suggests greater reliance on molecular methods for early life stage studies.