2.1 Process and Objective
In Passive DAC, the ambient weather conditions, primarily temperature (T), relative humidity (RH), and wind speed (\(\:{\varvec{v}}_{\varvec{w}\varvec{i}\varvec{n}\varvec{d}}\)), play a key role in determining the carbon capture performance of the sorbent. This study involves analysis of weather variability on the carbon capture process. The acquired weather data from the National Oceanic and Atmospheric Administration (NOAA) underwent preprocessing, including handling missing values, converting data types (e.g., datetime, float), and interpolating gaps, ensuring suitability for integration into a mathematical model 17. The moisture swing model developed serves as a robust tool for calculating both the CO2 productivity and water loss from the sorbent during a single sorbent cycle.
The moisture swing sorbent on which our modeling is based is Excellion I-200, a mixed-matrix quaternary ammonium ion exchange resin fabricated by SnowPure LLC, California 18. To approximately represent this sorbent's behavior, two fundamental isotherm models are utilized: a modified Langmuir isotherm for equilibrium loading with CO2 and the Flory-Huggins equation for equilibrium loading with water. It is essential to recognize that these isotherm models serve as a preliminary decoupled proxy, enabling initial performance modeling in the absence of a rigorous co-adsorption model required for precise prediction of the ion exchange resin's adsorption behavior. The primary objective of this study is to develop an initial modeling framework to understand the performance variability of moisture swing DAC sorbents influenced by ambient weather parameters. This model is designed with sufficient flexibility to allow future integration of a more accurate co-adsorption model that better represents the actual behavior of the sorbent.
Temperature effects are critical to the modeling approach. By assuming a specific temperature dependence of the equilibrium constant \(\:{\varvec{K}}^{\varvec{{\prime\:}}}\), one can incorporate a temperature dependence into the Langmuir model. By contrast, the Flory-Huggins equation, expressed in terms of relative humidity, already incorporates temperature effects through the temperature dependence of the water vapor-liquid equilibrium. These two models, operating synergistically, allow us to comprehensively characterize the sorbent's behavior under varying conditions.
Our analysis extends beyond static modeling and encompasses the dynamic sorbent cycle, consisting of capture and regeneration phases. Throughout this cycle, CO₂ loading and unloading rates are governed by a reduced-order linear-driving-force (LDF) rate expression that drives q toward the stage equilibrium (\(\:{\varvec{q}}^{\varvec{*}}\)). In the capture stage, the lumped mass-transfer rate constant \(\:{\varvec{k}}_{\varvec{r}\varvec{a}\varvec{t}\varvec{e}}\) is parameterized directly by ambient wind speed and temperature (with relative humidity entering primarily through \(\:{\varvec{q}}^{\varvec{*}}\)), enabling us to relate meteorology to time-per-cycle and hence productivity. For water, the Flory-Huggins equilibrium model is used to estimate the equilibrium swing between regeneration and capture conditions, from which net water loss per cycle is computed given the stage durations.
Detailed adsorption models for DAC often (i) use activity-based co-adsorption thermodynamics that explicitly couple CO₂ and H₂O at the surface 7,13,19, or (ii) employ fixed-bed partial differential equation (PDE) models with co-adsorption isotherms and multi-parameter kinetic closures 8,9,19. These approaches are powerful for device-scale design but require extensive sorbent- and device-specific parameters (site densities, heats, activity coefficients, fitted co-adsorption parameters, axial dispersion/heat transfer, wall heat transfer, pressure drop, etc.) and typically hinge on local CO₂/H₂O concentrations at the surface. In contrast, our intent here is complementary: a parsimonious, meteorology-driven screening model that maps long-run temperature, relative humidity, and ambient wind speed to CO₂ productivity and water-loss rate across sites using NOAA data. The chosen decoupled proxy (modified Langmuir for CO₂; Flory-Huggins for H₂O) minimizes parameter burden while retaining a path to replace the proxies with co-adsorption forms when detailed inputs become available. This enables geospatial assessment and site triage without committing to device-specific PDE detail.
Cycle scope: Fig. 1 summarizes the Moisture–Temperature–Vacuum Swing Adsorption (MTVSA) cycle. The cycle comprises: (i) capture (ambient contact), (ii) isolate, (iii) pre-evacuate, (iv) steam regeneration, (v) condense & product take-off, and (vi) re-expose.
In this paper we explicitly model only the (i) capture stage and (iv) steam-regeneration stage, because these are the stages whose kinetics and equilibria depend on ambient weather conditions (T, RH, \(\:{\varvec{v}}_{\varvec{w}\varvec{i}\varvec{n}\varvec{d}}\)). The remaining steps—(ii) isolate, (iii) pre-evacuate, (v) condense & product take-off, and (vi) re-expose—are treated as weather-agnostic logistics. We fix their setpoints/conditions (e.g., \(\:{\varvec{t}}_{\varvec{r}\varvec{e}\varvec{g}}\) = 1200s,\(\:\:{\varvec{T}}_{\varvec{r}\varvec{e}\varvec{g}}={50}^{\varvec{o}}\varvec{C}\), \(\:\varvec{R}{\varvec{H}}_{\varvec{r}\varvec{e}\varvec{g}}=95\varvec{\%}\), and \(\:{\varvec{p}}_{\varvec{c}{\varvec{o}}_{2}\:\varvec{r}\varvec{e}\varvec{g}}=600\:\varvec{P}\varvec{a}\), as specified) and do not co-optimize them. The variability analysis presented here isolates how ambient T, RH, and \(\:{\varvec{v}}_{\varvec{w}\varvec{i}\varvec{n}\varvec{d}}\) control CO2 productivity and water-loss rate; fixed thermal energy demands for vacuum generation, evacuation, condensation, and product recovery are outside the present scope. During regeneration we supply humidified steam to 95% RH at 50°C (exogenous low-pressure steam or recirculated vapor). The CO₂/H₂O mixture is subsequently cooled so that water is condensed and returned, and CO₂ is withdrawn; the energy for these logistics is outside our scope. We do not assume autothermal steam generation by sorption; rather, humidification/steam is provided externally (or by recycle). ‘Free energy of sorption’ is used in the thermodynamic sense to explain why moisture promotes desorption, not to imply zero external heat.
The notional device is a planar, open-cell passive contactor exposed to free-stream wind and operated in batch mode, alternating ambient capture with steam-humid regeneration. During capture, CO₂ uptake follows a reduced-order LDF kinetics closure with a lumped rate constant that depends on T, RH, and \(\:{\varvec{v}}_{\varvec{w}\varvec{i}\varvec{n}\varvec{d}}\); we select the capture duration via an approach-to-equilibrium optimizer (ψ) to maximize per-cycle CO2 productivity (see Supplemental Information, S3). When the optimized capture state is reached, the module is isolated, pre-evacuated, and transferred to a regeneration chamber where moisture, mild heat, and low CO2 partial pressure (50°C, 95% RH, \(\:{p}_{c{o}_{2}\:reg}=600\:Pa\), \(\:{t}_{reg}\) = 1200s) drive desorption of CO₂ before the module is re-exposed to ambient.
2.2 CO2 Isotherm Model
For moisture-swing DAC sorbents, Wang et al. (2013) proposed a linear relationship between the Gibbs free energy (\(\:\varDelta\:{\varvec{G}}_{\varvec{o}}\)) of adsorption of CO2 and the relative humidity in fraction (\(\:{\varvec{h}}_{\varvec{r}}\)) 20:
$$\:\varvec{\Delta\:}{\varvec{G}}_{\varvec{o}}=\varvec{a}+\varvec{b}\left(1+\varvec{\beta\:}{\varvec{h}}_{\varvec{r}}\right)\varvec{*}{\varvec{h}}_{\varvec{r}}+\varvec{c}\varvec{*}(\varvec{T}-{\varvec{T}}_{\varvec{o}})$$
1
Here, the parameters \(\:\varvec{a}\), \(\:\varvec{b}\), and\(\:\:\varvec{c}\) are obtained by fitting the model to experimental data, with values of -32.2 kJ/mol, 15.45 kJ/mol, and 0.02564 kJ/mol-K, respectively 20. \(\:{\varvec{T}}_{\varvec{o}}\) represent the average temperature maintained during the experiments in the study by Wang et al. (2013) as 288.15 K, \(\:\varvec{\beta\:}\)=0 at \(\:{\varvec{T}}_{\varvec{o}}=288.15\:\varvec{K},\) and T denotes the ambient temperature in Kelvin. Following Wang et al. (2013), β is defined such that at the reference temperature \(\:{\varvec{T}}_{\varvec{o}}\) the humidity-coupling correction vanishes (β = 0), and departures from \(\:{\varvec{T}}_{\varvec{o}}\) are captured by the \(\:\varvec{c}(\varvec{T}-{\varvec{T}}_{\varvec{o}})\) term. Given the small magnitude of the fitted coefficient c, the model predicts only a weak dependence of CO₂ adsorption on temperature.
The apparent equilibrium constant (\(\:\varvec{K}\varvec{{\prime\:}}\)), which provides the sorbent affinity for CO2 at fixed water vapor pressure, can be derived from \(\:\varDelta\:{\varvec{G}}_{\varvec{o}}\) as:
$$\:{\varvec{K}}^{\varvec{{\prime\:}}}=\mathbf{e}\mathbf{x}\mathbf{p}(-\frac{\varvec{\Delta\:}{\varvec{G}}_{\varvec{o}}}{\varvec{R}\varvec{T}})$$
2
Illustrative calculation: at \(\:T=298\:K\) and \(\:{h}_{r}=0.3\), Eq. (1) gives \(\:{\Delta\:}{G}^{o}\approx\:-27.3\:kJ\:mo{l}^{-1}\); Eq. (2) then yields \(\:{K}^{{\prime\:}}\approx\:6*{10}^{4}\:P{a}^{-1}\).
Here, \(\:\varvec{R}\) corresponds to the universal gas constant, which is 8.314*10− 3 kJ/mol-K.
To determine the CO2 sorbent saturation (\(\:\varvec{\theta\:}\)), the modified Langmuir isotherm model is applied,
$$\:\varvec{\theta\:}=\frac{{\varvec{K}}^{\varvec{{\prime\:}}}{\varvec{p}}_{\varvec{C}{\varvec{O}}_{2}}}{1+{\varvec{K}}^{\varvec{{\prime\:}}}{\varvec{p}}_{\varvec{C}{\varvec{O}}_{2}}}$$
3
In the above equation, \(\:{\varvec{p}}_{\varvec{C}{\varvec{O}}_{2}}\:\)represents the relative partial pressure of CO2 against a reference pressure of 1 atm (101,325 Pa).
2.3 Sorbent Loading
The equilibrium loading that can be approached during ambient conditions during the capture cycle (\(\:{\varvec{q}}_{\varvec{e}\varvec{q}\:\varvec{c}\varvec{a}\varvec{p}}\)), in mol CO2/kg sorbent, is calculated as the product of the sorbent equilibrium saturation (\(\:\varvec{\theta\:}\)) and the maximum stoichiometric sorbent loading (\(\:{\varvec{q}}_{\varvec{m}\varvec{a}\varvec{x}}\)), which is estimated to be 1.18 mol CO2/kg sorbent as derived from the equivalent capacity provided on the Manufacturing Specification Sheet for Excellion I-200 resins21. The equilibrium loading approached at the end of regeneration (\(\:{\varvec{q}}_{\varvec{e}\varvec{q}\:\varvec{r}\varvec{e}\varvec{g}}\)), in mol CO2/kg sorbent, is given by the product of the regeneration equilibrium fraction (\(\:{\varvec{\theta\:}}_{\varvec{r}\varvec{e}\varvec{g}}\)) and \(\:{\varvec{q}}_{\varvec{m}\varvec{a}\varvec{x}}\):
$$\:{\varvec{q}}_{\varvec{e}\varvec{q}\:\varvec{c}\varvec{a}\varvec{p}}=\varvec{\theta\:}\varvec{*}{\varvec{q}}_{\varvec{m}\varvec{a}\varvec{x}}\:$$
4
$$\:{\varvec{q}}_{\varvec{e}\varvec{q}\:\varvec{r}\varvec{e}\varvec{g}}={\varvec{\theta\:}}_{\varvec{r}\varvec{e}\varvec{g}}\varvec{*}{\varvec{q}}_{\varvec{m}\varvec{a}\varvec{x}}$$
5
We refer to amount of CO2 that is unloaded from the sorbent as it swings from an equilibrium with ambient condition to an equilibrium with temperature and moisture conditions in the regenerator as the net equilibrium CO2 loading (\(\:{\varvec{q}}_{\varvec{e}\varvec{q}\:\varvec{n}\varvec{e}\varvec{t}}\)), which is given in mol CO2/kg sorbent.
$$\:{\varvec{q}}_{\varvec{e}\varvec{q}\:\varvec{n}\varvec{e}\varvec{t}}={\varvec{q}}_{\varvec{e}\varvec{q}\:\varvec{c}\varvec{a}\varvec{p}}-{\varvec{q}}_{\varvec{e}\varvec{q}\:\varvec{r}\varvec{e}\varvec{g}}$$
6
2.4 Flory-Huggins Theory
Flory-Huggins model can serve as a theoretical approximation to model the water adsorption in Excellion I-200 sorbent in lieu of experimental data available from the literature 22. The Flory-Huggins equation, represented as Eq. 7, mathematically describes the relationship between the natural logarithm of the water activity (\(\:\varvec{a}\)) (water activity = relative humidity / 100%) and the volume fraction of water sorbed in the sorbent or polymer (ϕ2):
$$\:\mathbf{ln}\varvec{a}=\mathbf{ln}{\varvec{\varphi\:}}_{2}+\left(1-{\varvec{\varphi\:}}_{2}\right)+\varvec{\chi\:}{\left(1-{\varvec{\varphi\:}}_{2}\right)}^{2}$$
7
The Flory-Huggins interaction parameter (\(\:\varvec{\chi\:}\)) is a dimensionless quantity that characterizes the interaction between the polymer and the solvent and is influenced by temperature and pressure. \(\:\varvec{\chi\:}\) can be obtained for Excellion I-200 sorbent based on the water-to-carbonate ratio against water activity experimental data available in the literature 23 (see Supporting Information, S1). Once χ is known for the sorbent, the water loading for the sorbent can be obtained from ϕ2 at a particular water activity (a) (see Supporting Information, S2).
2.5 Reaction kinetics
We model the CO2 moisture-swing uptake with a first-order linear-driving-force (LDF) rate expression, with a mass transfer rate constant \(\:{\varvec{k}}_{\varvec{r}\varvec{a}\varvec{t}\varvec{e}}\), 9,24
$$\:\frac{\varvec{d}\varvec{q}}{\varvec{d}\varvec{t}}={\varvec{k}}_{\varvec{r}\varvec{a}\varvec{t}\varvec{e}}\left({\varvec{q}}^{\varvec{*}}-\varvec{q}\right)$$
8
which results in an exponential decay of the difference between the actual loading state and the equilibrium state. The sorption is first-order with respect to the solid-phase driving force \(\:\left({\varvec{q}}^{\varvec{*}}-\varvec{q}\right)\). For a finite capture time \(\:{\varvec{t}}_{\varvec{c}\varvec{a}\varvec{p}}\), the loading will approach but not reach the equilibrium level. A similar argument can be made for the discharge of CO2 from the sorbent during regeneration. Because regeneration is conducted at 50°C, lower CO2 partial pressure of 600 Pa, and 95% RH with a fixed 1,200 s hold, we assume near-equilibrium unloading under these setpoints. This is an optimistic upper bound consistent with moisture-assisted desorption behavior reported under humid regeneration; device-specific kinetics could reduce the approach to equilibrium and proportionally lower throughput.
The LDF rate equation is akin to the reduced-order treatment used in cycle modeling (e.g., Elfving et al.)9. In this study, \(\:{\varvec{q}}^{\varvec{*}}\) is the equilibrium loading (capture: ambient \(\:\varvec{T},{\varvec{h}}_{\varvec{r}},\:{\varvec{p}}_{\varvec{C}{\varvec{O}}_{2}};\:\)regeneration: set \(\:\varvec{T},{\varvec{h}}_{\varvec{r}},\:{\varvec{p}}_{\varvec{C}{\varvec{O}}_{2}\:\varvec{r}\varvec{e}\varvec{g}}\)).
With this assumption, it is possible to introduce the ratio \(\:\varvec{\psi\:}\) as
$$\:\varvec{\psi\:}=\frac{{\varvec{q}}_{\varvec{a}\varvec{c}\varvec{t}\:\varvec{n}\varvec{e}\varvec{t}}}{{\varvec{q}}_{\varvec{e}\varvec{q}\:\varvec{n}\varvec{e}\varvec{t}}}=1-\mathbf{e}\mathbf{x}\mathbf{p}(-{\varvec{k}}_{\varvec{r}\varvec{a}\varvec{t}\varvec{e}}{\varvec{t}}_{\varvec{c}\varvec{a}\varvec{p}})$$
9
In optimizing capture time, the dimensionless ratio, denoted by \(\:\varvec{\psi\:}\), plays a crucial role in balancing speed and collection rate. This ratio can be dynamically optimized to maximize the actual net CO2 loading (\(\:{\varvec{q}}_{\varvec{a}\varvec{c}\varvec{t}\:\varvec{n}\varvec{e}\varvec{t}}\)) under varying weather conditions. A design optimization model was developed to dynamically optimize \(\:\varvec{\psi\:}\) based on instantaneous weather conditions (see Supporting Information, S3).
By re-arranging Eq. 9, one can express the capture time, in terms of \(\:\varvec{\psi\:}\), as
$$\:{\varvec{t}}_{\varvec{c}\varvec{a}\varvec{p}}=-\frac{\mathbf{log}\left(1-\varvec{\psi\:}\right)}{{\varvec{k}}_{\varvec{r}\varvec{a}\varvec{t}\varvec{e}}}$$
10
Unlike fan-driven PSA/TSA/TVSA cycles with controlled superficial velocity, our passive contactor uses ambient wind as the air mover, so we regress a lumped \(\:{\varvec{k}}_{\varvec{r}\varvec{a}\varvec{t}\varvec{e}}\)against ambient wind velocity and temperature, Eq. (11)–(12). Thus, we map meteorological drivers (wind and temperature; relative humidity acts primarily through \(\:{\varvec{q}}^{\varvec{*}}\)) to \(\:{\varvec{k}}_{\varvec{r}\varvec{a}\varvec{t}\varvec{e}}\) for a passive device, while retaining an LDF structure compatible with standard CO2 adsorption from humid air. Because the lumped \(\:{\varvec{k}}_{\varvec{r}\varvec{a}\varvec{t}\varvec{e}}\) is influenced by wind speed and temperature, we adopt a linear parameterization for their influence, via \(\:{\varvec{v}}_{\varvec{w}\varvec{i}\varvec{n}\varvec{d}}\) and \(\:\varvec{f}\left(\varvec{T}\right)\), based on wind-tunnel experimental data (see Supporting Information, S4).
$$\:{\varvec{k}}_{\varvec{r}\varvec{a}\varvec{t}\varvec{e}}={\varvec{c}}_{\varvec{r}\varvec{a}\varvec{t}\varvec{e}}\varvec{*}\varvec{f}\left(\varvec{T}\right)\varvec{*}{\varvec{v}}_{\varvec{w}\varvec{i}\varvec{n}\varvec{d}}$$
11
Here, \(\:{\varvec{c}}_{\varvec{r}\varvec{a}\varvec{t}\varvec{e}}\) is an empirical coefficient derived from limited data obtained in wind-tunnel experiments conducted at ASU’s Center for Negative Carbon Emissions, yielding a value of 1.5 * 10− 4 m− 1 (see Supporting Information, S4). The wind velocity (converted to m s− 1) data are obtained from NOAA weather records. Additionally, an Arrhenius-type term, denoted as \(\:\varvec{f}\left(\varvec{T}\right)\), is incorporated into the equation to account for the impact of temperature on the rate constant. The factor is assumed to be:
$$\:\varvec{f}\left(\varvec{T}\right)=\mathbf{e}\mathbf{x}\mathbf{p}\left[\varvec{b}\varvec{{\prime\:}}\varvec{*}\left(\frac{1}{{\varvec{T}}_{\varvec{a}\varvec{m}\varvec{b}}}-\frac{1}{{\varvec{T}}_{25}}\right)\right]$$
12
In this equation, \(\:{\varvec{T}}_{\varvec{a}\varvec{m}\varvec{b}}\) represents the ambient temperature, \(\:{\varvec{T}}_{25}\) refers to the temperature at which the wind tunnel experiment was conducted (25°C), and \(\:{\varvec{b}}^{\varvec{{\prime\:}}}=-9600{\varvec{K}}^{-1}\) represents the fit parameter based on experimental data for the sorbent (see Supporting Information, S4).
2.6 CO2 productivity
The Langmuir isotherm model (discussed earlier) provides an estimate of the equilibrium CO2 loading in terms of moles of CO2 per kilogram of sorbent. Using Eq. 13, the cycle-average mass of CO2 captured (\(\:{\varvec{m}}_{\varvec{C}{\varvec{O}}_{2}})\) in kilograms per kilogram of sorbent can be calculated.
$$\:{\varvec{m}}_{\varvec{C}{\varvec{O}}_{2}}={\varvec{q}}_{\varvec{e}\varvec{q}\:\varvec{n}\varvec{e}\varvec{t}}\varvec{*}\varvec{\psi\:}\varvec{*}{\varvec{M}\varvec{W}}_{\varvec{C}{\varvec{O}}_{2}}$$
13
Here, \(\:{\varvec{q}}_{\varvec{e}\varvec{q}\:\varvec{n}\varvec{e}\varvec{t}}\) represents the equilibrium net CO2 loading obtained from the Langmuir isotherm model; ψ is the dimensionless ratio that determines the net actual loading of the sorbent relative to its equilibrium loading; \(\:{\varvec{M}\varvec{W}}_{\varvec{C}{\varvec{O}}_{2}}\) represents the molecular weight of CO2, which is 0.044 kg/mol.
Additionally, the CO2 reaction kinetics enables us to estimate the capture time (\(\:{\varvec{t}}_{\varvec{c}\varvec{a}\varvec{p}}\)), in seconds. The sum of the fixed regeneration time (\(\:{\varvec{t}}_{\varvec{r}\varvec{e}\varvec{g}}\)) of 1200 seconds and the variable capture time constitutes the duration of each cycle (converted to hours). In this work, “productivity” is defined as the cycle-average mass of CO₂ captured per unit sorbent and per unit time (kg-CO₂ kg⁻¹ hr⁻¹), equivalent to the rate in Eq. (14).
$$\:{\varvec{r}}_{{\varvec{C}\varvec{O}}_{2}}=\frac{{\varvec{m}}_{\varvec{C}{\varvec{O}}_{2}}}{\left({\varvec{t}}_{\varvec{c}\varvec{a}\varvec{p}}+{\varvec{t}}_{\varvec{r}\varvec{e}\varvec{g}}\right)}$$
14
2.7 Net Water Loss
We describe H2O uptake/desorption at the stage endpoints with the Flory-Huggins equilibrium model and evaluate per-cycle H2O exchange over the same capture window that governs CO2. Because CO2 is rate-limiting in our passive cycle, the device remains in ambient contact until the CO2 loading attains its design approach-to-equilibrium fraction (\(\:\varvec{\psi\:}\)); accordingly, we scale the H2O endpoint swing by the same \(\:\varvec{\psi\:}\) as a time-window surrogate, without introducing a separate \(\:{\varvec{k}}_{{\varvec{H}}_{2}\varvec{O}}\) or implying identical intrinsic kinetics 9,24. Since H2O typically equilibrates faster, this treatment is conservative for per-cycle water-loss accounting.
Under this closure, the net water mass exchanged per kilogram of sorbent in a cycle is:
$$\:{\varvec{m}}_{{\varvec{H}}_{2}\varvec{O}}={\varvec{q}}_{{\varvec{H}}_{2}\varvec{O}\:\varvec{n}\varvec{e}\varvec{t}}\varvec{*}\varvec{\psi\:}\varvec{*}{\varvec{M}\varvec{W}}_{{\varvec{H}}_{2}\varvec{O}}$$
15
Here, \(\:{\varvec{q}}_{{\varvec{H}}_{2}\varvec{O}\:\varvec{n}\varvec{e}\varvec{t}}\) represents the net water loading obtained from Flory-Huggins isotherm model and Eq. 16, considering a specific relative humidity. The molecular weight of H2O (\(\:{\varvec{M}\varvec{W}}_{{\varvec{H}}_{2}\varvec{O}}\)) is 0.018 kg/mol.
After regeneration at high water activity, exposure to drier ambient air drives net desorption of H₂O until the sorbent equilibrates with the ambient relative humidity. Conversely, during the regeneration phase at higher relative humidity, the sorbent gains water. The regeneration condition aims for a high relative humidity. Because we model water uptake in sorbent with Flory-Huggins equation, which becomes singular at 100% relative humidity, a nominal relative humidity of 95% is chosen as a typical condition. Following pre-evacuation, the regeneration chamber primarily contains H2O and CO2, with water added for regeneration and CO2 desorbed from the sorbent. The net water loading (\(\:{\varvec{q}}_{{\varvec{H}}_{2}\varvec{O}\:\varvec{n}\varvec{e}\varvec{t}}\)) and the net water-loss rate (\(\:{\varvec{l}}_{{\varvec{H}}_{2}\varvec{O}}\)) within each cycle are calculated using Equations 16 and 17, respectively:
$$\:{\varvec{q}}_{{\varvec{H}}_{2}\varvec{O}\:\varvec{n}\varvec{e}\varvec{t}}={\varvec{q}}_{{\varvec{H}}_{2}\varvec{O}\:\varvec{r}\varvec{e}\varvec{g}}-{\varvec{q}}_{{\varvec{H}}_{2}\varvec{O}\:\varvec{c}\varvec{a}\varvec{p}}$$
16
$$\:{\varvec{l}}_{{\varvec{H}}_{2}\varvec{O}}=\frac{{\varvec{m}}_{{\varvec{H}}_{2}\varvec{O}}}{\left({\varvec{t}}_{\varvec{c}\varvec{a}\varvec{p}}+{\varvec{t}}_{\varvec{r}\varvec{e}\varvec{g}}\right)}$$
17
2.8 Representative Meteorological Site
Since moisture-swing sorbents are strongly affected by ambient conditions, it is important to estimate performance for a specific location. Here, a representative site, St. Johns, Arizona, is selected to perform a thorough analysis of site-specific variability. This analysis focuses on assessing the site's potential for CO2 productivity and its associated water loss for each cycle in response to varying ambient weather conditions. Hourly weather data spanning 17 years from 2006 to 2022 is taken from St. Johns weather station (ID: 93027) in Arizona. The data is sourced from the NOAA and its resources, including the Local Climatological Data (LCD) and Climate Data Online (CDO) tools provided by the National Climatic Data Center (NCDC) 25,26. To ensure data integrity, preprocessing steps are performed, including the removal of missing values, converting data types (e.g., datetime, float), and interpolating gaps, facilitating their integration into the mathematical model. Temperature and relative humidity data for a representative site were plotted to assess their variability (see Supporting Information, S5). Discrete raw wind speed data obtained from NOAA weather records were converted into continuous values using Monte Carlo randomization (see Supporting Information, S6). These processed meteorological datasets are then ready for utilization in the mathematical model, enabling the analysis of the impact of weather conditions on the moisture-swing process.