Alexander ME, Dick JTA, Weyl OLF, et al (2014) Existing and emerging high impact invasive species are characterized by higher functional responses than natives. Biol Lett 10:20130946. https://doi.org/10.1098/rsbl.2013.0946
Balian E, Segers H, Lévêque C, Martens K (2008) The Freshwater Animal Diversity Assessment: An overview of the results. Hydrobiologia 595:627–637. https://doi.org/10.1007/s10750-007-9246-3
Bellard C, Cassey P, Blackburn TM (2016) Alien species as a driver of recent extinctions. Biol Lett 12:20150623. https://doi.org/10.1098/rsbl.2015.0623
Blackburn TM, Bellard C, Ricciardi A (2019) Alien versus native species as drivers of recent extinctions. Front Ecol Environ 17:203–207. https://doi.org/10.1002/fee.2020
Boets P, Laverty C, Fukuda S, et al (2019) Intra- and intercontinental variation in the functional responses of a high impact alien invasive fish. Biol Invasions 21:1751–1762. https://doi.org/10.1007/s10530-019-01932-y
Bolker B, R Development Core Team (2023) _bbmle: Tools for General Maximum Likelihood Estimation_. R package version 1.0.25.1, <https://CRAN.R-project.org/package=bbmle>.
Bolker B (2008) Ecological Models and Data in R. Princeton University Press
Bollache L, Dick JTA, Farnsworth KD, Montgomery WI (2007) Comparison of the functional responses of invasive and native amphipods. Biol Lett 4:166–169. https://doi.org/10.1098/rsbl.2007.0554
Bradley BA, Beaury EM, Fusco EJ, Lopez BE (2023) Invasive Species Policy Must Embrace a Changing Climate. BioScience 73:124–133. https://doi.org/10.1093/biosci/biac097
Chicatun V, Sheppard NLM, Ricciardi A (2024) Intraspecific variation in the functional response of an invasive crayfish under different temperatures. Can J Zool 102:746–758. https://doi.org/10.1139/cjz-2024-0006
Chybowski Ł (2013) Absolute fecundity of two populations of signal crayfish, Pacifastacus leniusculus (Dana). Fish Aquat Life 21:357–362. https://doi.org/10.2478/aopf-2013-0036
Cìlbìz M (2020) Pleopodal fecundity of narrow-clawed crayfish (Pontastacus leptodactylus Eschscholtz, 1823). Invertebr Reprod Dev 64:208–218. https://doi.org/10.1080/07924259.2020.1762771
Cox JG, Lima SL (2006) Naiveté and an aquatic–terrestrial dichotomy in the effects of introduced predators. Trends Ecol Evol 21:674–680. https://doi.org/10.1016/j.tree.2006.07.011
Crooks JA (2005) Lag times and exotic species: The ecology and management of biological invasions in slow-motion1. Écoscience 12:316–329. https://doi.org/10.2980/i1195-6860-12-3-316.1
Cuthbert RN, Briski E (2021) Temperature, not salinity, drives impact of an emerging invasive species. Sci Total Environ 780:146640. https://doi.org/10.1016/j.scitotenv.2021.146640
Cuthbert RN, Dickey JWE, Coughlan NE, et al (2019) The Functional Response Ratio (FRR): advancing comparative metrics for predicting the ecological impacts of invasive alien species. Biol Invasions. https://doi.org/10.1007/s10530-019-02002-z
Darwall W, Bremerich V, De Wever A, et al (2018) The Alliance for Freshwater Life: A global call to unite efforts for freshwater biodiversity science and conservation. Aquat Conserv Mar Freshw Ecosyst 28:1015–1022. https://doi.org/10.1002/aqc.2958
Dick JTA, Alexander ME, Jeschke JM, et al (2014) Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biol Invasions 16:735–753. https://doi.org/10.1007/s10530-013-0550-8
Dick JTA, Laverty C, Lennon JJ, et al (2017) Invader Relative Impact Potential: a new metric to understand and predict the ecological impacts of existing, emerging and future invasive alien species. J Appl Ecol 54:1259–1267. https://doi.org/10.1111/1365-2664.12849
Dickey JWE, Cuthbert RN, South J, et al (2020) On the RIP: using Relative Impact Potential to assess the ecological impacts of invasive alien species. NeoBiota 55:27–60. https://doi.org/10.3897/neobiota.55.49547
Doherty TS, Glen AS, Nimmo DG, et al (2016) Invasive predators and global biodiversity loss. Proc Natl Acad Sci 113:11261–11265. https://doi.org/10.1073/pnas.1602480113
Dunoyer L, Dijoux L, Bollache L, Lagrue C (2014) Effects of crayfish on leaf litter breakdown and shredder prey: are native and introduced species functionally redundant? Biol Invasions 16:1545–1555. https://doi.org/10.1007/s10530-013-0590-0
Edmonds NJ, Riley WD, Maxwell DL (2011) Predation by Pacifastacus leniusculus on the intra-gravel embryos and emerging fry of Salmo salar. Fish Manag Ecol 18:521–524. https://doi.org/10.1111/j.1365-2400.2011.00797.x
Faria L, Cuthbert R, Dickey J, et al (2025) Non-native species have higher consumption rates than their native counterparts. Biol Rev Camb Philos Soc. https://doi.org/10.1111/brv.13179
Foucreau N, Cottin D, Piscart C, Hervant F (2014) Physiological and metabolic responses to rising temperature in Gammarus pulex (Crustacea) populations living under continental or Mediterranean climates. Comp Biochem Physiol A Mol Integr Physiol 168:69–75. https://doi.org/10.1016/j.cbpa.2013.11.006
Fox J, Weisberg S (2019) _An R Companion to Applied Regression_, Third edition. Sage, Thousand Oaks CA. <https://www.john-fox.ca/Companion/>.
Galib S (2020) THE ECOLOGICAL IMPACTS OF SIGNAL CRAYFISH IN UPLAND STREAM ECOSYSTEMS. Doctoral, Durham University
Gherardi F, Aquiloni L, Diéguez-Uribeondo J, Tricarico E (2011) Managing invasive crayfish: is there a hope? Aquat Sci 73:185–200. https://doi.org/10.1007/s00027-011-0181-z
Grimm J, Dick JTA, Verreycken H, et al (2020) Context-dependent differences in the functional responses of conspecific native and non-native crayfishes. In: NeoBiota. pp 71–88
Harwood M, Stebbing PD, Dunn AM, et al (2025) Rapid assessment of population dynamics and monitoring methods for invasive narrow clawed crayfish Pontastacus leptodactylus in a freshwater reservoir. Knowl Manag Aquat Ecosyst 22. https://doi.org/10.1051/kmae/2025017
Hodson J, South J, Cancellario T, Guareschi S (2024) Multi-method distribution modelling of an invasive crayfish (Pontastacus leptodactylus) at Eurasian scale. Hydrobiologia. https://doi.org/10.1007/s10750-024-05641-z
Holdich DM, James J, Jackson C, Peay S (2014) The North American signal crayfish, with particular reference to its success as an invasive species in Great Britain. Ethol Ecol Evol 26:232–262. https://doi.org/10.1080/03949370.2014.903380
Holdich DM, Reynolds J, Souty-Grosset C, Sibley P (2008) A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowl Manag Aquat Ecosyst. http://dx.doi.org/101051/kmae/2009025 11:
Hynes HBN (1955) The Reproductive Cycle of Some British Freshwater Gammaridae. J Anim Ecol 24:352–387. https://doi.org/10.2307/1718
IPBES (2019) Summary for policymakers of the global assessment report on biodiversity and ecosystem services. Zenodo
Jackson MC, Jones T, Milligan M, et al (2014) Niche differentiation among invasive crayfish and their impacts on ecosystem structure and functioning. Freshw Biol 59:1123–1135. https://doi.org/10.1111/fwb.12333
Juliano SA (1998) Nonlinear Curve Fitting: Predation and Functional Response Curves. In: Design and Analysis of Ecological Experiments. Chapman and Hall/CRC
Kelly DW, Dick JTA, Montgomery WI (2002) The functional role of Gammarus(Crustacea, Amphipoda): shredders, predators, or both? Hydrobiologia 485:199–203. https://doi.org/10.1023/A:1021370405349
Kir M, Ege ÇINAR İ, Can SUNAR M, Topuz M (2025) Acclimation, thermal tolerance and aerobic metabolism of narrow-clawed crayfish, Pontastacus leptodactylus (Eschscholtz, 1823). J Therm Biol 104045. https://doi.org/10.1016/j.jtherbio.2025.104045
Kumschick S, Gaertner M, Vilà M, et al (2015) Ecological Impacts of Alien Species: Quantification, Scope, Caveats, and Recommendations. BioScience 65:55–63. https://doi.org/10.1093/biosci/biu193
Laverty C, Green KD, Dick JTA, et al (2017) Assessing the ecological impacts of invasive species based on their functional responses and abundances. Biol Invasions 19:1653–1665. https://doi.org/10.1007/s10530-017-1378-4
Lowe J, Bernie D, Bett P, et al (2018) UKCP18 Overview report. Met Office Hadley Centre
Mathers KL, White JC, Fornaroli R, Chadd R (2020a) Flow regimes control the establishment of invasive crayfish and alter their effects on lotic macroinvertebrate communities. J Appl Ecol 57:886–902. https://doi.org/10.1111/1365-2664.13584
Mathers KL, White JC, Guareschi S, et al (2020b) Invasive crayfish alter the long-term functional biodiversity of lotic macroinvertebrate communities. Funct Ecol 34:2350–2361. https://doi.org/10.1111/1365-2435.13644
Meehan ML, Lindo Z (2023) Mismatches in thermal performance between ectothermic predators and prey alter interaction strength and top-down control. Oecologia 201:1005–1015. https://doi.org/10.1007/s00442-023-05372-3
Moorhouse TP, Macdonald DW (2015) Are invasives worse in freshwater than terrestrial ecosystems? WIREs Water 2:1–8. https://doi.org/10.1002/wat2.1059
Navel S, Mermillod-Blondin F, Montuelle B, et al (2010) Interactions between fauna and sediment control the breakdown of plant matter in river sediments. Freshw Biol 55:753–766. https://doi.org/10.1111/j.1365-2427.2009.02315.x
O’Hea Miller SB, Davis AR, Wong MYL (2024) The Impacts of Invasive Crayfish and Other Non-Native Species on Native Freshwater Crayfish: A Review. Biology 13:610. https://doi.org/10.3390/biology13080610
Öhlund G, Hedström P, Norman S, et al (2015) Temperature dependence of predation depends on the relative performance of predators and prey. Proc R Soc B Biol Sci 282:20142254. https://doi.org/10.1098/rspb.2014.2254
Padilla DK, Williams SL (2004) Beyond ballast water: aquarium and ornamental trades as sources of invasive species in aquatic ecosystems. Front Ecol Environ 2:131–138. https://doi.org/10.1890/1540-9295(2004)002[0131:BBWAAO]2.0.CO;2
Peay S (2001) Eradication of Alien Crayfish Populations. Environment Agency
Pintanel P, Tejedo M, Salinas-Ivanenko S, et al (2021) Predators like it hot: Thermal mismatch in a predator–prey system across an elevational tropical gradient. J Anim Ecol 90:1985–1995. https://doi.org/10.1111/1365-2656.13516
Pritchard D (2017) _frair: Tools for Functional Response Analysis_. R package version 0.5.100, <https://CRAN.R-project.org/package=frair>.
Pritchard DW, Paterson RA, Bovy HC, Barrios-O’Neill D (2017) frair: an R package for fitting and comparing consumer functional responses. Methods Ecol Evol 8:1528–1534. https://doi.org/10.1111/2041-210X.12784
Real LA (1977) The Kinetics of Functional Response. Am Nat 111:289–300. https://doi.org/10.1086/283161
Reid AJ, Carlson AK, Creed IF, et al (2019) Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev 94:849–873. https://doi.org/10.1111/brv.12480
Ricciardi A, Hoopes M, Marchetti M, Lockwood J (2013) Progress toward understanding the ecological impacts of nonnative species. Ecol Monogr 83:263–282. https://doi.org/10.1890/13-0183.1
Rogers D (1972) Random Search and Insect Population Models. J Anim Ecol 41:369–383. https://doi.org/10.2307/3474
Sala OE, Stuart Chapin F, III, et al (2000) Global Biodiversity Scenarios for the Year 2100. Science 287:1770–1774. https://doi.org/10.1126/science.287.5459.1770
Simberloff D (2021) Maintenance management and eradication of established aquatic invaders. Hydrobiologia 848:2399–2420. https://doi.org/10.1007/s10750-020-04352-5
South J, Dickey JWE, Cuthbert RN, Dick JTA (2022) Combining resource population dynamics into impact assessments of native and invasive species under abiotic change. Ecol Indic 142:109260. https://doi.org/10.1016/j.ecolind.2022.109260
South J, Mccard M, Khosa D, et al (2019) The effect of prey identity and substrate type on the functional response of a globally invasive crayfish. NeoBiota 52:. https://doi.org/10.3897/neobiota.52.39245
Strayer DL (2010) Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshw Biol 55:152–174. https://doi.org/10.1111/j.1365-2427.2009.02380.x
Strayer DL, Dudgeon D (2010) Freshwater biodiversity conservation: recent progress and future challenges. J North Am Benthol Soc 29:344–358. https://doi.org/10.1899/08-171.1
Strayer DL, Eviner VT, Jeschke JM, Pace ML (2006) Understanding the long-term effects of species invasions. Trends Ecol Evol 21:645–651. https://doi.org/10.1016/j.tree.2006.07.007
Teesalu P, Muuga J-M, Hurt M, et al (2025) Effects of temperature on marbled crayfish (Procambarus virginalis, Lyko 2017) invasion ecology. Hydrobiologia 852:3541–3558. https://doi.org/10.1007/s10750-025-05828-y
Tickner D, Opperman JJ, Abell R, et al (2020) Bending the Curve of Global Freshwater Biodiversity Loss: An Emergency Recovery Plan. BioScience 70:330–342. https://doi.org/10.1093/biosci/biaa002
Uiterwaal SF, DeLong JP (2020) Functional responses are maximized at intermediate temperatures. Ecology 101:e02975. https://doi.org/10.1002/ecy.2975
Urban MC, Bocedi G, Hendry AP, et al (2016) Improving the forecast for biodiversity under climate change. Science 353:aad8466. https://doi.org/10.1126/science.aad8466
Vári Á, Podschun SA, Erős T, et al (2022) Freshwater systems and ecosystem services: Challenges and chances for cross-fertilization of disciplines. Ambio 51:135–151. https://doi.org/10.1007/s13280-021-01556-4
Vellinger C, Felten V, Sornom P, et al (2012) Behavioural and Physiological Responses of Gammarus pulex Exposed to Cadmium and Arsenate at Three Temperatures: Individual and Combined Effects. PLoS ONE 7:e39153. https://doi.org/10.1371/journal.pone.0039153
Vucic-Pestic O, Birkhofer K, Rall BC, et al (2010a) Habitat structure and prey aggregation determine the functional response in a soil predator–prey interaction. Pedobiologia 53:307–312. https://doi.org/10.1016/j.pedobi.2010.02.003
Vucic-Pestic O, Rall BC, Kalinkat G, Brose U (2010b) Allometric functional response model: body masses constrain interaction strengths. J Anim Ecol 79:249–256. https://doi.org/10.1111/j.1365-2656.2009.01622.x
Welton JS, Clarke RT (1980) Laboratory Studies on the Reproduction and Growth of the Amphipod, Gammarus pulex (L.). J Anim Ecol 49:581–592. https://doi.org/10.2307/4265