

Geospatial and Ecological Forces Shaping Multi-omics Shifts in *Lycoris aurea* (L'Hér.)

Sun Lei

leisun248@126.com

Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University

Tan Zizhen

18670879067@163.com

Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University

Tian Yuqiao

tyqhnhh@163.com

Hunan Provincial Engineering Research Center focuses on developing *Polygonatum* germplasm resources and advancing medicinal-food integration technologies.

Li Shenghua

lishenghua201@163.com

Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University

Quan Miaohua

hhqmh100@163.com

Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University

Research Article

Keywords:

DOI: <https://doi.org/>

License: This work is licensed under a Creative Commons Attribution 4.0 International License.

[Read Full License](#)

Additional Declarations: No competing interests reported.

1 **Title: Geospatial and Ecological Forces Shaping Multi-omics**
2 **Shifts in *Lycoris aurea* (L'Hér.)**

3 Sun Lei^{1,2+}, Tan Zizhen^{1,2+}, Tian Yuqiao³, Li Shenghua^{1,2*}, Quan Miaohua^{1,2*}

4 ¹ Resources of Hunan Province, College of Biological and Food Engineering, Huaihua
5 University, Huaihua 418000, China

6 ² Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on
7 Mountain Ecological Food, College of Biological and Food Engineering, Huaihua University,
8 Huaihua 418008, China

9 ³ Hunan Provincial Engineering Research Center focuses on developing Polygonatum
10 germplasm resources and advancing medicinal-food integration technologies. Huaihua
11 418008, China

12 + Co-first authors:

13 Sun Lei, Tan Zizhen

14 * Corresponding authors:

15 Li Shenghua: lishenghua201@163.com

16 Quan Miaohua: hhqmh100@163.com

17 **Abstract**

18 **Background:**

19 With stunning golden-yellow flowers, the perennial bulbous plant Golden Spider Lily
20 [*Lycoris aurea* (L'Hér.)] thrives in temperate to subtropical regions of East Asia. Besides the
21 ornamental value, *L. aurea* is also praised as a source of various biologics and a major
22 pollinator attractant. The adaptability and resilience of *L. aurea* allow it to endure drought,
23 waterlogging, and suboptimal soil conditions. However, the effect of habitat and ecology on
24 *L. aurea* metabolites remains unexplored.

25 **Method**

26 This study investigates the spatial and environmental influences on the metabolites and
27 gene expression of *L. aurea* using a combined metabolomic and transcriptomic approach.
28 Bulbs were collected from five locations in China, selected for their diverse ecological and
29 environmental conditions, including variations in temperature, precipitation, soil pH, and
30 selenium concentration. The metabolites in the bulb extracts were analyzed using UPLC-
31 MS/MS, and RNA sequencing was performed to capture gene expression data. The
32 correlation between environmental factors and metabolite accumulation, as well as gene
33 expression, was analyzed to understand the plant's adaptive mechanisms.

34 **Results**

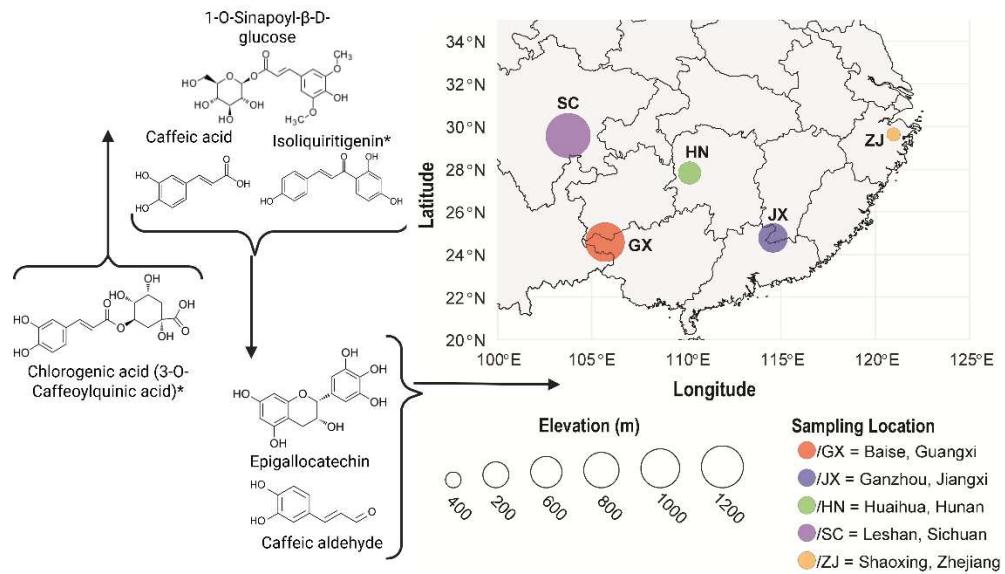
35 The analysis revealed significant variations in the metabolite and gene expression
36 profiles of *L. aurea* bulbs from different locations. Alkaloids, flavonoids, and phenolic acids
37 were among the most abundant metabolites identified, with geographic differences
38 influencing their abundance. For example, higher-altitude samples exhibited increased levels
39 of flavonoids and terpenoids, compounds associated with plant defense mechanisms. Gene
40 expression patterns mirrored these findings, with upregulation of genes involved in
41 secondary metabolite biosynthesis in plants from higher altitudes. Environmental factors
42 such as soil pH, selenium concentration, and altitude were found to play significant roles in
43 shaping both the metabolite composition and gene expression patterns of the plant.
44 Metabolites related to plant defense, lignin production, biotic and abiotic stresses were
45 affected mainly by spatial heterogeneity.

46 **Conclusion**

47 This study highlights the impact of environmental and spatial factors on the biochemical
48 and genetic profiles of *L. aurea*, showing how the plant adapts to varying conditions. Altitude,
49 latitude, and soil composition are key determinants of its metabolic output. These findings
50 provide insights into optimizing cultivation and enhancing the medicinal properties of the
51 plant. Future research should investigate the regulatory networks that link gene expression
52 to metabolite biosynthesis in response to environmental cues.

53 **Keywords:** *Spatial, ecological, plant adaptation, golden spider lily, metabolomics,*
54 *transcriptomics*

55 **Graphical Abstract**



57 **1. Background**

58 *Lycoris aurea* (L'Hér.), commonly known as the Golden Spider Lily, is a well-known
59 member of the Amaryllidaceae family [1-4]. Native to East Asia, especially southern China,
60 Taiwan, and Japan, this perennial bulbous plant is distinguished by its vivid golden-yellow
61 blooms that blossom in late summer or early fall, often preceding its elongated, slender,
62 leafless stems [3, 5]. The petals of its flower are arched backward like spider legs, which has
63 led to its colloquial designation, 'Spider Lily' [5]. In addition to its visual allure, *L. aurea* has
64 considerable cultural, medicinal, and ecological significance, making it a focal point in
65 botanical and pharmacological research [3, 5]. In its habitat, the nectar-rich *L. aurea* flowers
66 attract various pollinators, such as bees and butterflies, providing essential pollination
67 services [6, 7]. In traditional Chinese medicine, *L. aurea* is highly valued for its rich
68 composition of bioactive alkaloids [3]. For instance, the pulverized bulbs of *L. aurea* have
69 been used as a poultice for treating burns, scalds, and ulcers in Hubei, China [8]. Additionally,
70 *L. aurea* generates many bioactive alkaloids, notably Lycorine, Homolycorine, and other
71 associated chemicals, with most research documenting them in its ovary [9] and bulbs [4, 5,
72 10-13]. These metabolites are responsible for the plant's biological activity and are of interest
73 in traditional medicine, as they are believed to possess antitumor, antimicrobial, and anti-
74 inflammatory properties. Lycorine showed antiviral and anticancer activity [14, 15],
75 Galanthamine has anti-inflammatory properties [16] and alleviates the neuropsychiatric
76 symptoms of Alzheimer's [17, 18]. Though other *Lycoris* sp. ubiquitously synthesizes these
77 compounds, their amount varies between species [4] and location [3], which can be
78 attributed to several genes from alkaloid and phenylpropanoid biosynthesis pathways such
79 as Aldehyde Dehydrogenase (ALDH), Phenylalanine Ammonia-Lyase (PAL), and Norbelladine
80 4'-O-Methyltransferase (N4OMT) [9, 19, 20], as well as ecological conditions such as soil
81 quality, sunlight, rainfall, and soil microbiota [4, 5, 7, 12, 21, 22].

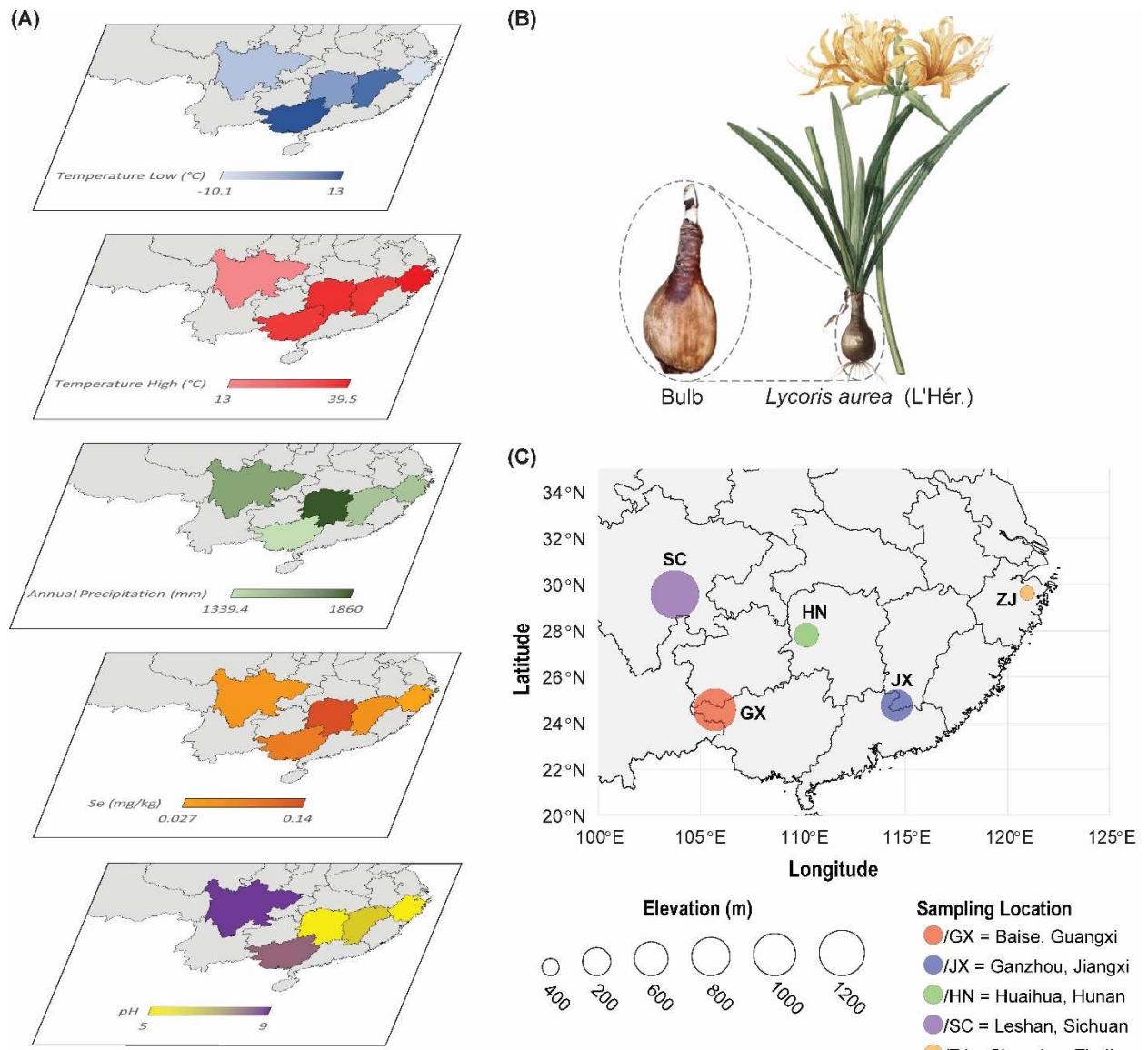
82 *L. aurea* flourishes in temperate to subtropical climates, in shaded and humid habitats
83 with optimal drainage and sufficient irrigation [4, 5]. They often grow in sheltered wet slopes
84 near streams in mountainous regions, on the edges of woods, rice paddies, and plantations
85 [22]. However, their distinctive pre-foliar blooming reduces nutrient requirements, enabling
86 them to thrive in various other environments [3]. Additionally, its bulbous roots store
87 nutrients and energy [5], allowing it to endure drought, waterlogging, and suboptimal soil
88 conditions and to regenerate after each blooming season [22]. So, the herb is also well-suited
89 to diverse altitudes, temperatures, light, water, and soil conditions, exhibiting resilience
90 against pests and diseases [5]. Since soil composition affects the nutritional and metabolic
91 profile of *L. aurea* bulbs [11], other agroecological, seasonal, and spatial factors may have a
92 similar impact [3, 4, 23]. For example, suboptimal irrigation during the latter development
93 stage of *L. aurea* was reported to enhance bulb alkaloid concentration [21]. Other factors
94 affecting plant alkaloid production include age, microbial attack, and grazing [23]. For
95 instance, with a decrease in latitude, herbivore and pathogen pressure on *Anguinaria*
96 *canadensis* increases, while the diversity and toxicity of alkaloids increase [24]. In contrast,
97 plants grown at higher altitudes, where temperatures are cooler and sunlight is more intense,
98 may produce different concentrations or types of metabolites to adapt to harsher conditions
99 [25]. Similarly, geographic differences in soil composition, humidity, and sunlight can
100 influence the synthesis of specific alkaloids, leading to variations in the medicinal and toxic
101 properties of the plant across regions [26].

102 Plants from niches with higher rainfall, such as the subtropical areas of Taiwan, may
103 exhibit a different metabolic composition compared to those growing in drier, temperate
104 zones in China or Japan [27]. When determining the best places to get bioactive molecules
105 from, scientists must consider how different altitudes, latitudes, and longitudes affect the
106 plant's metabolism [24, 28, 29]. Temperate, subtropical, and higher-altitude environments
107 differ ecologically and climatically, leading to metabolic variations that affect the chemical
108 composition of plants, as well as their growth patterns, blooming cycles, and overall health
109 [23, 27, 30]. For instance, Lycorine, the principal alkaloid of *L. aurea*, is higher in temperate
110 areas and increases with soil pH, moisture content, and Selenium (Se) levels, while those in
111 humid or tropical climates may produce different alkaloids [3]. Studying spatial effects on a
112 plant's metabolic differences will provide valuable insights into its adaptability and its
113 secondary metabolites' role in defense [24]. Moreover, it could guide the development of
114 optimal cultivation strategies to improve the yield of valuable bioactive chemicals [3]. By
115 understanding how altitude, latitude, and soil composition affect a plant's metabolic
116 output, we can tap into therapeutic potential while limiting toxicity [31]. Since *L. aurea* is
117 used as a medicinal plant in Ayurvedic and Chinese medicine practice, the pharmacological
118 properties of its various metabolites have been well studied, and some have even been
119 licensed as contemporary therapeutics [21]. Conversely, despite a few restricted studies
120 examining the effects of soil, water, altitude, and latitude on the plant, the influence of
121 location on *L. aurea* remains mostly enigmatic [3, 12, 21, 31]. Therefore, to maintain the
122 sustainability of the *L. aurea* ecosystem and cultivate it for medical purposes, we devised a
123 method to understand how the plant adjusts its metabolism to different geographic situations
124 by examining the metabolome and transcriptome of the plant collected from various locations
125 in China and performing a conjoint analysis.

126 **2. Method**

127 **2.1. Sample Collection**

128 Sampling sites were selected from the natural habitats of *L. aurea* to capture a diverse
129 array of variables affecting alkaloid production, encompassing spatial factors like latitude,
130 longitude, and elevation [29, 31], alongside environmental parameters such as temperature,
131 precipitation, soil pH, and Se concentration [25, 26, 32, 33]. We selected five sampling sites
132 within the natural habitat of *L. aurea* in China, characterized by diverse variables (Fig. 1A).
133 *L. aurea* bulbs were collected in triplicate from five locations in China between the 7th and
134 24th of August 2023 (Fig. 1B). Sampling locations included Baize city (105° 42', 24° 35',
135 877m) from Guangxi province (GX), Ganzhou city (114° 35', 24° 47', 446.5m) from Jiangxi
136 province (JX), Huaihua city (110° 10', 27° 49', 277m) from Hunan province (HN), Lashan
137 city (103° 44', 29° 56', 1168.9m) from Sichuan province (SC), and Shanxing city (120°
138 57', 29° 38', 189m) from Zhejiang province (ZJ) (Fig. 1C). Bulb samples were collected in
139 accordance with the Regulations on Wild Plant Protection of the People's Republic of China,
140 the Seed Law of the People's Republic of China, and relevant local regulations. Necessary
141 permissions for collection were obtained from Hunan Provincial Forestry Bureau, with the
142 permit number No. 222 of 2025. Specimens were identified by Prof. Zeng Hanyuan, and
143 voucher specimens were deposited in the Huaihua University with accession number
144 HHU2022-8. Collected Bbulbs were washed, flash-frozen, labelled, and stored at -80° C
145 before extraction.

148 Fig. 1: Collection of *L. aurea* bulb samples.

149 (A) Spatial and environmental analysis of *L. aurea* natural niches in China revealed five
150 suitable sampling locations characterized by diverse factors. Maps illustrate the lowest and
151 highest temperatures ($^{\circ}\text{C}$), annual precipitation (mm), selenium (Se) (mg/kg), and soil pH,
152 which may influence alkaloid production in *L. aurea*. (B) Image of *L. aurea* (L'Hér.), or Golden
153 Spider Lily, featuring its distinctive bulbous root. (C) The sampling sites of *L. aurea* are
154 indicated by colored circles, with circle size reflecting elevation.

156 **2.2. Metabolomics Analysis**157 **2.2.1. Sample Preparation and Extraction**

158 Bulbs were freeze-dried (Scientz-100F) and ground (30 Hz, 1.5 min) using a planetary
159 ball mill (MM 400, Retsch). 50 mg of powder was weighed (MS105DM) and dissolved in 1200

160 μ L of pre-cooled (-20°C) 70% methanol aqueous internal standard extract. The mixture was
161 vortexed every 30 min for 30 sec (6 times). After centrifugation (12000 rpm, 3 min), the
162 supernatant was filtered through a 0.22 μm membrane and stored in an injection vial for
163 UPLC-MS/MS analysis.

164 **2.2.2. Metabolomic Analysis**

165 Metabolites in *L. aurea* (L'Hér.) bulbs extracts were analyzed by Wuhan MetWare
166 Biotechnology Co., Ltd. (Wuhan, China) using a UPLC-ESI-MS/MS system (UPLC, ExionLC™
167 AD, <https://sciex.com.cn/>) and a Tandem mass spectrometry (MS/MS) system
168 (<https://sciex.com.cn/>), following their established protocols [34]. The UPLC system used an
169 Agilent SB-C18 1.8 μm , 2.1 mm \times 100 mm column with mobile phases A (ultrapure water
170 with 0.1% formic acid) and B (acetonitrile with 0.1% formic acid). The gradient started at 5%
171 B for 0 min, increased to 95% B by 9 min, and reverted to 5% B at 11.1 min. Flow rate: 0.35
172 mL/min; column temperature: 40°C; injection volume: 2 μL . ESI source temperature was set
173 at 500°C, with ion spray voltages of +5500 V (positive) and -4500 V (negative). Gas I, II, and
174 curtain were maintained at 50, 60, and 25 psi, respectively, under conditions of high collision-
175 induced ionization. The QQQ scan in MRM mode utilized nitrogen as the collision gas, with
176 optimized DP and CE for each ion pair.

177 **2.2.3. Metabolomics Data Acquisition and Quantitative Analysis**

178 Metabolite mass spectrometry data from various samples were analyzed, integrating the
179 peak areas of all chromatographic peaks. The mass spectrometry peaks corresponding to the
180 same metabolite across different samples were also integrated and corrected [35]. Mass
181 spectrometry data were processed with Analyst 1.6.3 (AB SCIEX, Concord, Ontario, Canada).
182 Metabolites from the samples were analyzed qualitatively and quantitatively via mass
183 spectrometry, utilizing the local metabolic database. MultiQuant software (Framingham,
184 Massachusetts, USA) is used to open the mass spectrometry file for the integration and
185 correction of chromatographic peaks. Quality control (QC) analysis was conducted on
186 samples prepared by mixing extracts, assessing repeatability through overlapping TIC
187 graphs under identical processing methods.

188 Data were scaled using unit variance (UV) and analyzed via unsupervised principal
189 component analysis (PCA) with the prcomp function in R (www.r-project.org). Hierarchical
190 cluster analysis (HCA) of samples and metabolites was visualized as heatmaps with
191 dendograms, and Pearson correlation coefficients (PCC) between samples were calculated
192 using the cor function in R and displayed as heatmaps. Both HCA and PCC analyses were
193 performed using the R package ComplexHeatmap. In HCA, metabolite signal intensities,
194 normalized and scaled to UV, were represented with a color spectrum.

195 Two groups were compared by identifying differential metabolites based on variable
196 importance projection ($\text{VIP} > 1$) and absolute log fold change ($|\text{Log}_2\text{FC}| \geq 1.0$). VIP values
197 were derived from orthogonal partial least squares discriminant analysis (OPLS-DA) using
198 score and permutation plots, with the R package MetaboAnalystR. Data were log-
199 transformed (\log_2) and mean-centered before OPLS-DA. A permutation test (200
200 permutations) was performed to prevent overfitting.

201 **2.2.4. Metabolite Annotation and Enrichment Analysis**

202 Identified metabolites were annotated using the Kyoto Encyclopedia of Genes and
203 Genomes (KEGG) Compound database (<http://www.kegg.jp/kegg/compound/>) and mapped to

204 the KEGG Pathway database (<http://www.kegg.jp/kegg/pathway.html>). Pathways with
205 significantly regulated metabolites were analyzed using metabolite set enrichment analysis
206 (MSEA), and p-values from the hypergeometric test determined their significance.

207 **2.3. Transcriptomics Analysis**

208 **2.3.1. RNA Extraction, cDNA Library Construction, and RNA-Sequencing**

209 Three biological replicates from each location were used for RNA-sequencing analysis,
210 performed by MetWare Biotechnology Co., Ltd. (Wuhan, China), following their standard
211 protocol. Total RNA was extracted using the RNeasy Mini Kit (QIAGEN, Germany). RNA
212 integrity was assessed by agarose gel electrophoresis, and RNA concentration was measured
213 using the Qubit® RNA Assay Kit (Life Technologies, USA). RNA quality was verified using
214 the Qsep400 Bioanalyzer (Bioptic, Taiwan). cDNA was synthesized from 1 µg of RNA per
215 sample, and sequencing libraries were prepared using the NEBNext® UltraTM RNA Library
216 Prep Kit for Illumina® (Nebraska, USA). The indexed samples were clustered on the cBot
217 Cluster Generation System (Illumina®) and sequenced on an Illumina platform, generating
218 150 bp paired-end reads.

219 **2.3.2. Transcriptome Data Acquisition and QC Analysis**

220 The initial dataset was cleaned using the 'fastp' tools [36] to remove adapter sequences,
221 reads with >10% N content, sequencing reads exceeding 10% of the base count, and reads
222 with >50% low-quality bases (Q≤20). Clean reads were used for all subsequent analyses.
223 Transcriptome assembly was performed using 'Trinity' (<https://github.com/trinityrnaseq/trinityrnaseq>) [37], and the 'Corset' tool [38] reorganized
224 transcripts into 'UniGene' clusters. Potential coding regions (CDS) were identified using
225 'TransDecoder' (<https://github.com/TransDecoder/>).
226

227 **2.3.3. Gene Functional Annotation**

228 The Unigene sequence was compared with KEGG, Nr (NCBI non-redundant protein
229 sequences), Swiss-Prot, GO, COG/KOG, and TrEMBL databases using DIAMOND [39]
230 BLASTX. The amino acid sequence of the Unigene was predicted and further compared with
231 the Pfam (Protein family) database using HMMER (<http://hmmer.org/>) to obtain annotation
232 information.

233 **2.3.4. Gene Expression Quantification and Differential Analysis**

234 Gene expression levels were estimated using the RSEM software [40], and FPKM
235 (Fragments Per Kilobase of transcript per Million fragments mapped) was calculated based
236 on gene length. Differential expressions between biological replicates were analyzed using
237 DESeq2 [41, 42], with the Benjamini-Hochberg method applied to correct for multiple
238 hypothesis testing, yielding the false discovery rate (FDR). Differentially expressed genes
239 (DEGs) were identified with $|\log_2\text{Fold Change}| \geq 1$ and $\text{FDR} < 0.05$.

240 Enrichment analysis was performed using the hypergeometric test, with KEGG and GO
241 analysis based on pathways and terms, respectively. Transcription factor analysis was done
242 using iTAK [43]. DEGs were subjected to DIAMOND BLASTX against the genome of a related
243 species, and predicted protein-protein interactions (PPIs) were obtained from the STRING
244 database (<http://string-db.org/>). Simple sequence repeats (SSRs) were identified using MISA
245 [44], and primers were designed using Primer3
246 (<http://primer3.sourceforge.net/releases.php>). Weighted correlation network analysis
247 (WGCNA) was performed using the WGCNA R Package [45].

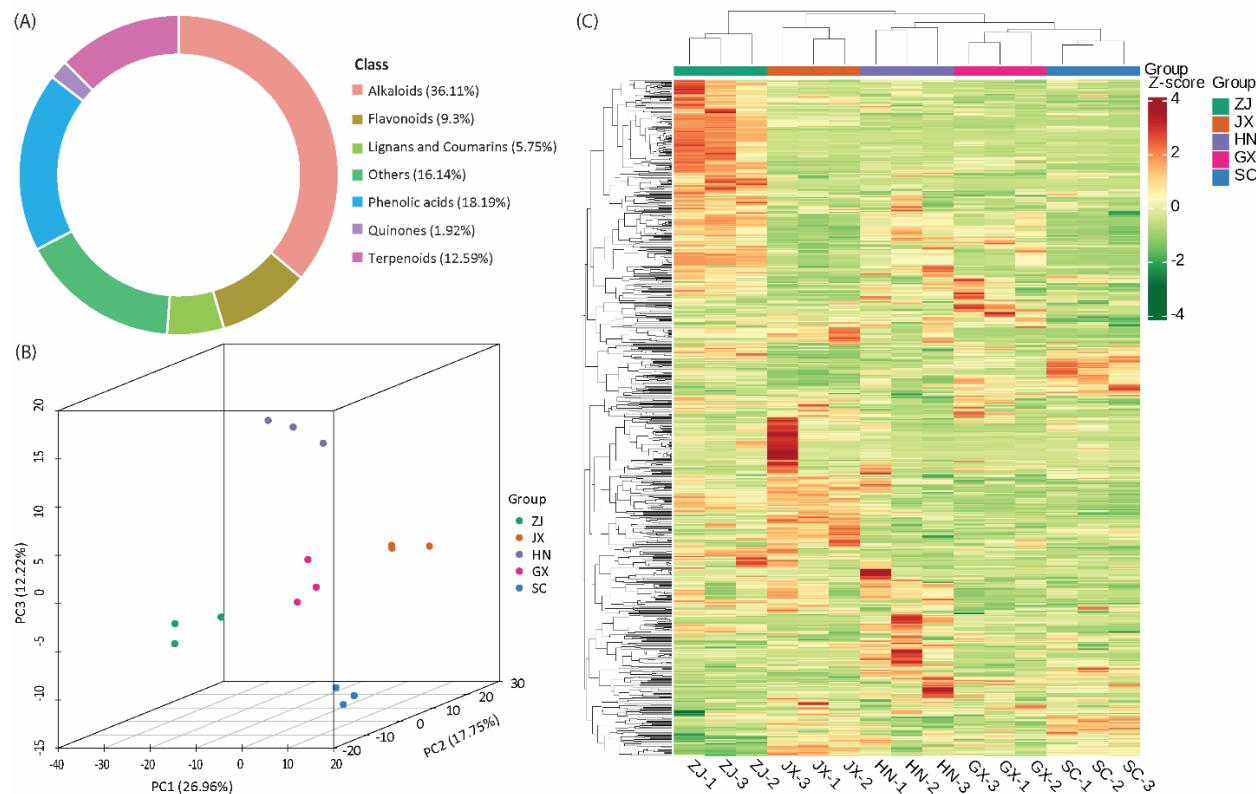
248 **2.4. Combined Metabolome and Transcriptome Analysis**

249 Combined metabolome and transcriptome analyses were conducted on the DEGs and
250 differentially accumulated metabolites (DAMs) to assess pathway enrichment. PCA was
251 performed to visualize distinctions across sample groups, followed by KEGG pathway, KEGG
252 enrichment, KGML, and Canonical Correlation Analysis (CCA) [46]. Expression trends and
253 correlations were analyzed using gene-metabolite networks with a Pearson Correlation
254 Coefficient (PCC) > 0.8 and p-value < 0.05 in each sample group [47].

255 **3. Results**

256 **3.1. Spatial Influence on *L. aurea* Bulbs Metabolome**

257 We analyzed the metabolomes of 70% methanolic extracts from *L. aurea* bulbs across 15
258 samples from 5 geographical locations in China, identifying 731 metabolites (Table S1).
259 These included 36.11% Alkaloids, 9.3% Flavonoids, 5.75% Lignans and Coumarins, 18.19%
260 Phenolic acids, 1.92% Quinones, 12.59% Terpenoids, and 16.14% other compounds (Fig. 2A).
261 OPLS-DA analysis (Fig. S1) effectively discriminated groups based on measured features,
262 with strong predictive ability (Q^2) and excellent model fit (R^2), identifying 546 differential
263 accumulated metabolites (DAMs) with $VIP > 1$ and $|Log_2FC| \geq 1.0$ (Table S2). 3D PCA (Fig.
264 2B) showed significant variance among groups, with biological replicates clustering closely.
265 The hierarchical clustered heat map (Fig. 2C) confirmed differential metabolite abundance
266 and identified biologically relevant pathways. These findings suggest location-specific
267 differences in the metabolomic profiles of *L. aurea* bulbs, potentially influenced by
268 environmental or genetic factors.



270 Fig. 2: *L. aurea* bulbs metabolomic analysis. (A) Ring diagram of metabolite class composition,
 271 with each color representing a metabolite category and the block area indicating the
 272 category's proportion. (B) 3D PCA of metabolites, with PC1, PC2, and PC3 representing the
 273 first, second, and third principal components, respectively, and percentages indicating each
 274 component's variance explained; each point represents a sample, with color denoting group
 275 membership. (C) Hierarchical clustered heatmap of metabolites across different
 276 experimental groups, with the sample names on the X-axis, metabolites on the Y-axis, and
 277 color gradients representing Z-scores for each data point.

278 Table 1: Summary of DAMs across different compared groups.

Group name	All significant differences	Down-regulated	Up-regulated
GX_vs_H N	171	120	51
GX_vs_JX	238	161	77
GX_vs_ZJ	283	211	72
HN_vs_JX	229	115	114
HN_vs_ZJ	216	160	56
JX_vs_ZJ	298	208	90
SC_vs_G X	203	104	99
SC_vs_H N	211	146	65
SC_vs_JX	226	156	70
SC_vs_ZJ	319	244	75

279 The fold change (FC) values of metabolites in the comparison group were calculated to
 280 highlight metabolic differences, with the top 10 up-regulated and down-regulated
 281 metabolites presented in a dynamic distribution diagram (Fig. S2). FC values across groups
 282 were compared, and bar charts of the top 20 metabolites with the highest FC between groups
 283 indicated that *L. aurea* bulb metabolites decrease with lower altitude and latitude but
 284 increase with higher longitude (Fig. S3). A clustering heatmap of differential metabolites
 285 revealed that samples from lower altitude/latitude or higher longitude (HN, JX, ZJ) exhibited
 286 higher Z-scores in Alkaloids, Terpenoids, and Flavonoids compared to SC or GX (Fig. S4). GX
 287 vs JX showed higher Z-scores in Phenolic acids, Flavonoids, Lignans, and Coumarins.

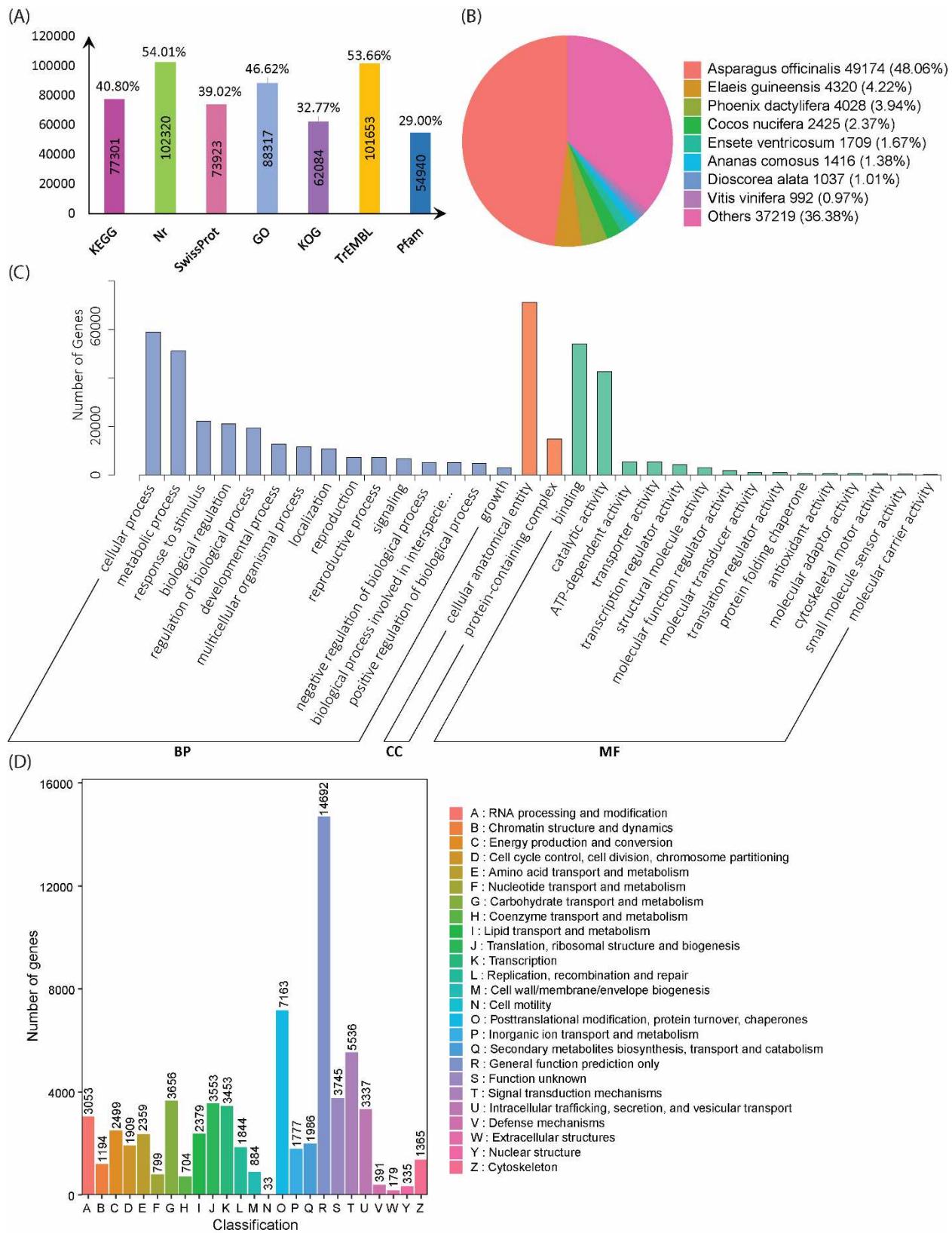
288 UV scaling followed by K-means cluster analysis showed the trend of the relative content
 289 of differential metabolites in different groups in two subclasses. In subclass 1, 259
 290 metabolites were ranked in the following order of abundance ZJ>HN>GX>JX>SC, clearly
 291 influenced by the altitude (Fig. S5A). In subclass 2, however, the order for the remaining 721

292 metabolites was JX>HN>SC>GX>ZJ (Fig. S5B). This result showed that geographic location
293 and altitude do not necessarily predict cluster similarity, indicating that local environmental
294 factors may outweigh simple spatial distance in shaping phenotypic or molecular traits.
295 However, the Venn diagram analysis of the DAM showed the highest number of common
296 DAM when ZJ was compared to others (Fig. S6D), but the lowest number of common DAM
297 was when GX was compared to others (Fig. S6A).

298 The KEGG analysis revealed several significantly enriched ($p<0.05$) DAM-associated
299 metabolic pathways across the compared groups. However, after multiple comparison
300 corrections, only the Flavonoid Biosynthesis (KO00941) pathway ($P=0.017$, cluster
301 frequency 42.86%) in the GX_vs_HN comparison and the Phenylpropanoid Biosynthesis
302 (KO00940) pathway ($P=0.028$, cluster frequency 25%) in the SC_vs_JX comparison remained
303 significant (Table S3).

304 **3.2. Spatial Influence on *L. aurea* Bulbs Gene Expression**

305 Transcriptome sequencing of 15 samples from 5 locations generated 103.42 Gb of clean
306 data, with each sample producing at least 6 Gb of clean reads and Q30 base percentages
307 over 93%, indicating high sequencing quality. The assembly yielded a database of 189,456
308 unigenes with an average length of 1,060 bp, N50 of 1,478 bp, and N90 of 488 bp. Alignment
309 with KEGG, NR, Swiss-Prot, GO, COG/KOG, and Trembl identified 77,301, 102,320, 73,923,
310 88,317, 62,084, and 101,653 homologs, covering 40.8%, 54.01%, 39.02%, 46.62%, 32.77%,
311 and 53.66% of the sequences, respectively (Fig. 4A). Pfam comparison revealed 54,940
312 homologs with 29% coverage, and NR BLAST hits showed a 48.06% match with *Asparagus*
313 *officinalis* (Fig. 4B). GO classification revealed enriched terms in biological process (cellular
314 process, metabolic process, response to stimulus), cellular component (cellular anatomical
315 entity, protein-containing complex), and molecular function [binding, catalytic activity, ATP
316 (Adenosine triphosphate)-dependent activity] (Fig. 4C). KOG analysis categorized unigenes
317 into 25 functional classes, with the largest group being "general function prediction only" (R,
318 14,692 unigenes), followed by "translation, ribosomal structure and biogenesis" (J, 7,163
319 unigenes), and "function unknown" (S, 5,536 unigenes), along with categories such as
320 "posttranslational modification" (O), "transcription" (K), and "replication, recombination and
321 repair" (L) (Fig. 4D).



322

323 Fig. 3: Function annotations of transcriptome sequencing. (A) Functional annotation
 324 numbers of unigenes in the KEGG, NR, Swiss-Prot, GO, COG/KOG, Trembl, and Pfam

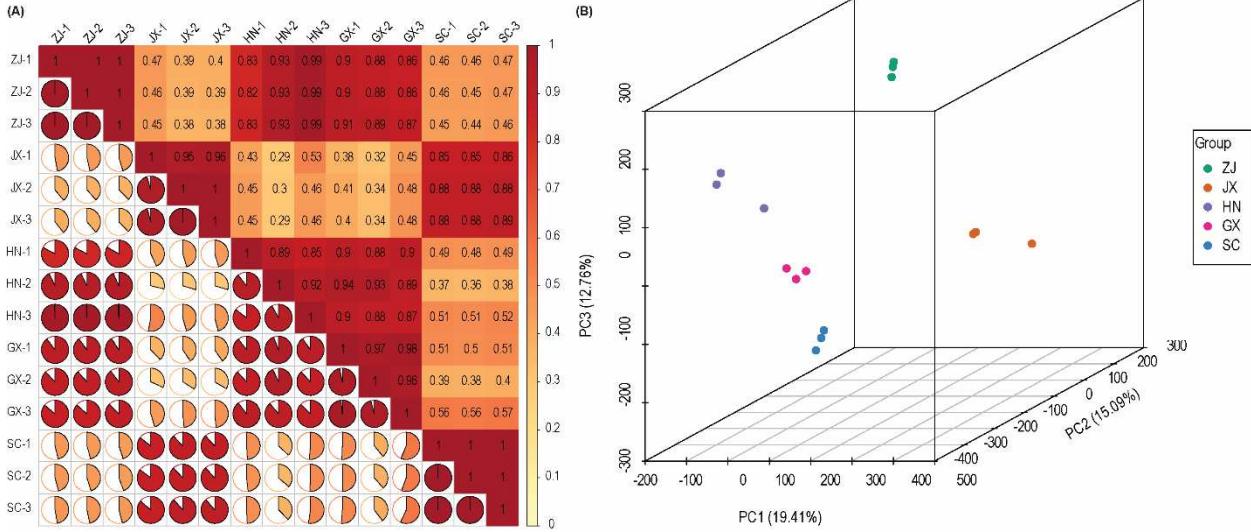
325 databases. (B) Annotated species distribution in the NR database. (C) GO classification
326 histogram, where the horizontal axis represents secondary GO entries, and the vertical axis
327 represents the number of genes annotated in each GO entry. (D) KOG classification chart,
328 where the horizontal axis represents functional classification codes of KOG IDs, and the
329 vertical axis represents the number of genes in each category. Different colors indicate
330 different classifications, and the legend provides the code with its functional description.

331 FPKM analysis revealed 60600 DEGs with $|\log_2\text{Fold Change}| \geq 1$ and $\text{FDR} < 0.05$
332 (Table 2) (Table S4). There was a significant difference in up-and down-regulated genes
333 between groups, suggesting a location-specific difference in the *L. aurea* gene expression.

334 Table 2: Summary of DEGs across different compared groups.

Group name	All significant differences	Down-regulated	Up-regulated
GX_vs_H N	11253	5619	5634
GX_vs_JX	23871	12569	11302
GX_vs_ZJ	20792	9468	11324
HN_vs_JX	22693	11686	11007
HN_vs_ZJ	20763	9288	11475
JX_vs_ZJ	27933	12232	15701
SC_vs_G X	15376	8337	7039
SC_vs_H N	17867	9593	8274
SC_vs_JX	27846	15503	12343
SC_vs_ZJ	24879	12166	12713

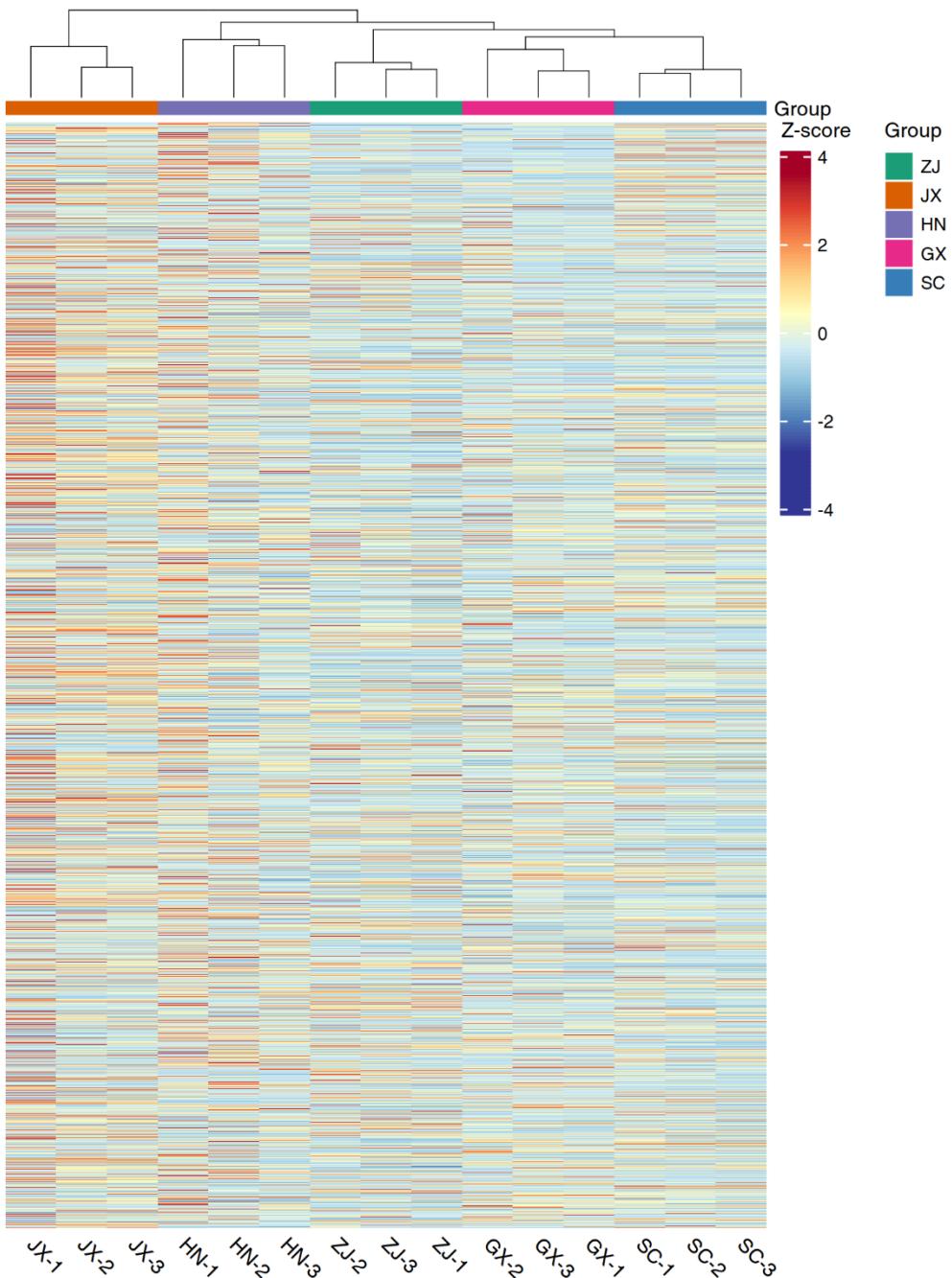
335 The FPKM distribution box plot showed consistent gene expression with narrow IQRs in
336 the ZJ, JX, HN, and GX groups (Fig. S7A). In contrast, the SC group displayed greater
337 variability and a wider IQR, indicating gene expression fluctuation. This was further
338 confirmed by the FPKM density distribution (Fig. S7B) and violin plot (Fig. S7C). Pearson
339 correlation analysis (Fig. 4A) revealed strong consistency in gene expression within most
340 groups, especially ZJ, JX, HN, and GX, while SC showed weaker correlations, indicating
341 higher variability. 3D PCA analysis (Fig. 4B) showed that PC1 (19.41%), PC2 (15.09%), and
342 PC3 (12.76%) captured significant variance, with distinct clustering of ZJ and JX, overlap in
343 SC and GX, and separation of the HN group.



345 Fig. 4: *L. aurea* bulbs Gene Expression Pattern. (A) The sample correlation plot, where
 346 Pearson's Correlation Coefficient (r) is used to evaluate the correlation between biological
 347 replicates. The closer the absolute value of r is to 1 (the redder the color), the stronger the
 348 correlation between the two replicate samples. (B) 3D PCA plot of gene expression where
 349 PC1, PC2, and PC3 represent the first, second, and third principal components, and the
 350 percentage represents the explanation rate of the principal component for the data set; each
 351 point in the figure represents a sample, and the same color represents samples in the same
 352 group.

353 The volcano plots (Fig. S8) revealed that most clusters were non-regulated across
 354 comparisons, with several key clusters showing significant upregulation or downregulation,
 355 particularly in the order JX_vs_ZJ > SC_vs_JX > SC_vs_ZJ > GX_vs_JX. The highest number
 356 of significantly up-regulated genes was observed in the JX_vs_ZJ comparison (15,701). The
 357 SC group exhibited a higher proportion of non-regulated genes, especially in the SC_vs_GX
 358 (45,224) and SC_vs_ZJ (35,721) comparisons. The radar chart (Fig. S9) identified clusters
 359 with substantial fold changes between comparisons. In the JX_vs_ZJ comparison, clusters
 360 such as 92568.3 and 90745.2 showed significant fold changes, while in SC_vs_JX, clusters
 361 90372.1 and 63903.15 were notable. Similarly, in SC_vs_ZJ, clusters 50696.3 and 93131.15
 362 exhibited large fold changes, and in GX_vs_JX, clusters 93131.19 and 63903.15 were
 363 significantly changed. Notably, cluster 90372.1 appeared in six comparisons (GX_vs_JX,
 364 GX_vs_ZJ, HN_vs_JX, HN_vs_ZJ, SC_vs_JX, and SC_vs_ZJ), and cluster 51222.2 was found in
 365 four comparisons (GX_vs_JX, GX_vs_ZJ, SC_vs_JX, and SC_vs_ZJ). Several other top clusters
 366 were also common across two or three comparisons.

367 The heatmap color bar and hierarchical clustering dendrogram between groups (Fig.
 368 S10) showed distinct gene expression patterns between *L. aurea* bulbs from different
 369 locations, with clear group separation. Some genes varied within the same group, suggesting
 370 environmental or genetic influences. Clustering revealed that SC was most closely related to
 371 GX, followed by ZJ, HN, and JX (Fig. 5).



372

373 Fig. 5: Differential gene clustering heat map of *L. aurea* bulbs from different locations. Here,
 374 the horizontal axis represents the sample name and hierarchical clustering results, and the
 375 vertical axis represents the differentially expressed genes and hierarchical clustering results.
 376 Red represents high expression, and blue represents low expression.

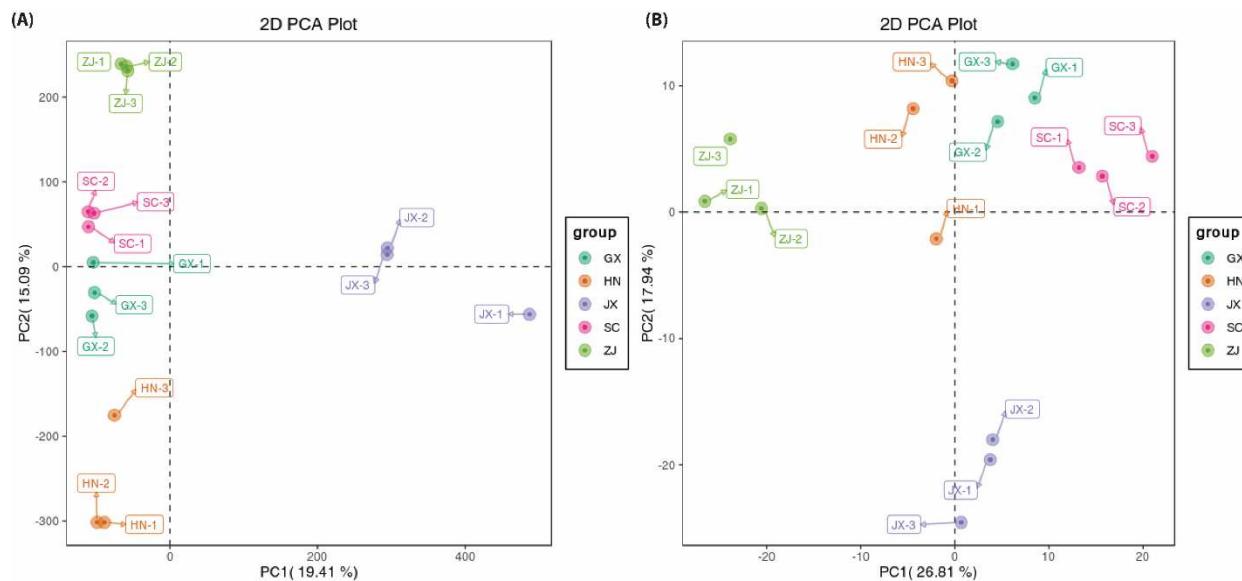
377 K-means cluster analysis of 60,600 DEGs revealed distinct gene expression patterns
 378 across 10 subclasses (Fig. S11). In subclass 1, 7,005 DEGs were ranked in the order
 379 ZJ>JX>HN>GX>SC (Fig. S11A), while in subclass 2, 8,501 DEGs were ranked
 380 SC>GX>HN>JX>ZJ (Fig. S11B), indicating altitude influence. Sharp peaks in subclasses 3,

5, and 6 (Fig. S11C, E, F) were observed in HN; ZJ and SC in subclass 4 (Fig. S11D); GX in subclasses 7 and 8 (Fig. S11G, H); and JX in subclasses 9 and 10 (Fig. S11I, J), suggesting environmental or other factors. The Venn diagram showed the highest number of unique DEGs in JX compared to other groups (Fig. S12C), while GX had the fewest unique DEGs (Fig. S12A).

KEGG analysis of DEGs identified several significant DEG-associated pathways ($p < 0.05$) across the compared groups, with 10 pathways remaining significant after P-value adjustment (Table S5). The Protein processing in endoplasmic reticulum pathway (KO04141) was significant in SC_vs_JX ($P = 0.0000003901$), HN_vs_ZJ ($P = 0.0000008429$), GX_vs_HN ($P = 0.0000074452$), SC_vs_HN ($P = 0.0000490227$), JX_vs_ZJ ($P = 0.0000816909$), HN_vs_JX ($P = 0.0002185169$), GX_vs_JX ($P = 0.0085480832$), and SC_vs_ZJ ($P = 0.0091569183$). The Ribosome pathway (KO03010) was significant in SC_vs_HN ($P = 0.0000039810$) and HN_vs_ZJ ($P = 0.0001579419$). The Starch and sucrose metabolism pathway (KO00500) was significant in SC_vs_GX ($P = 0.0067584993$) and GX_vs_JX ($P = 0.0113422941$). The Cutin, suberine, and wax biosynthesis pathway (KO00073) was significant in SC_vs_GX ($P = 0.0004739915$) and SC_vs_ZJ ($P = 0.0195882035$). Other significant pathways included the Spliceosome pathway (KO03040) in HN_vs_ZJ ($P = 0.0000519557$), Biosynthesis of secondary metabolites (KO01110) in SC_vs_ZJ ($P = 0.0096887642$), Biosynthesis of unsaturated fatty acids (KO01040) in SC_vs_HN ($P = 0.0066542895$), Phenylpropanoid biosynthesis (KO00940) in JX_vs_ZJ ($P = 0.0037528038$), Linoleic acid metabolism (KO00591) in GX_vs_HN ($P = 0.0002745666$), and Glutathione metabolism (KO00480) in GX_vs_ZJ ($P = 0.0199734744$).

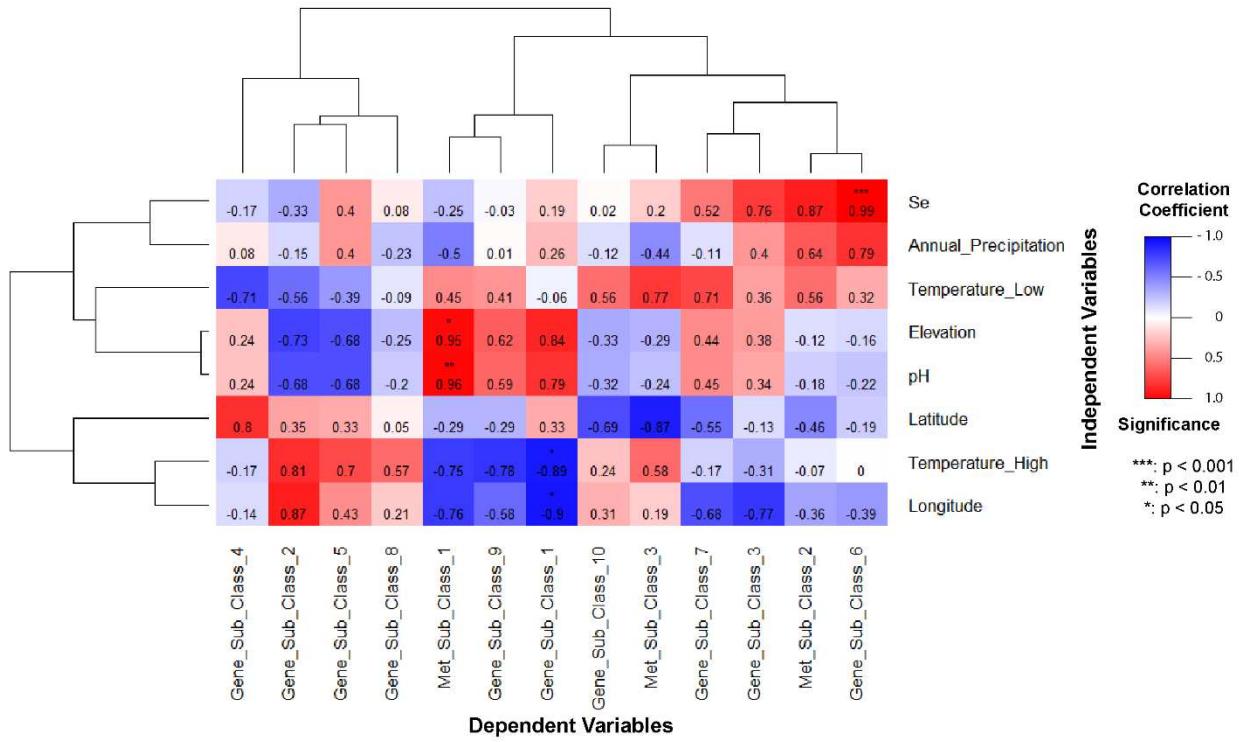
3.3. Integrated Analysis

Combined PCA analysis of the transcriptome and metabolome showed distinct clustering of samples, particularly from ZJ and SC (Fig. 6A), with clear separation between regions, indicating unique gene expression profiles. Metabolome data (Fig. 6B) also revealed differentiation, with ZJ displaying a unique metabolic profile, while HN and GX clustered closely together. JX samples showed overlapping and distinct separation patterns, suggesting varying metabolic signatures. Overall, ZJ exhibited the most pronounced differences in both transcriptomic and metabolomic profiles.



412 Fig. 6: 2D PCA analysis of *L. aurea* transcriptomes (A) and metabolomes (B). The horizontal
 413 axis represents principal component 1, the vertical axis represents principal component 2,
 414 and points of different colors represent samples in different groups.

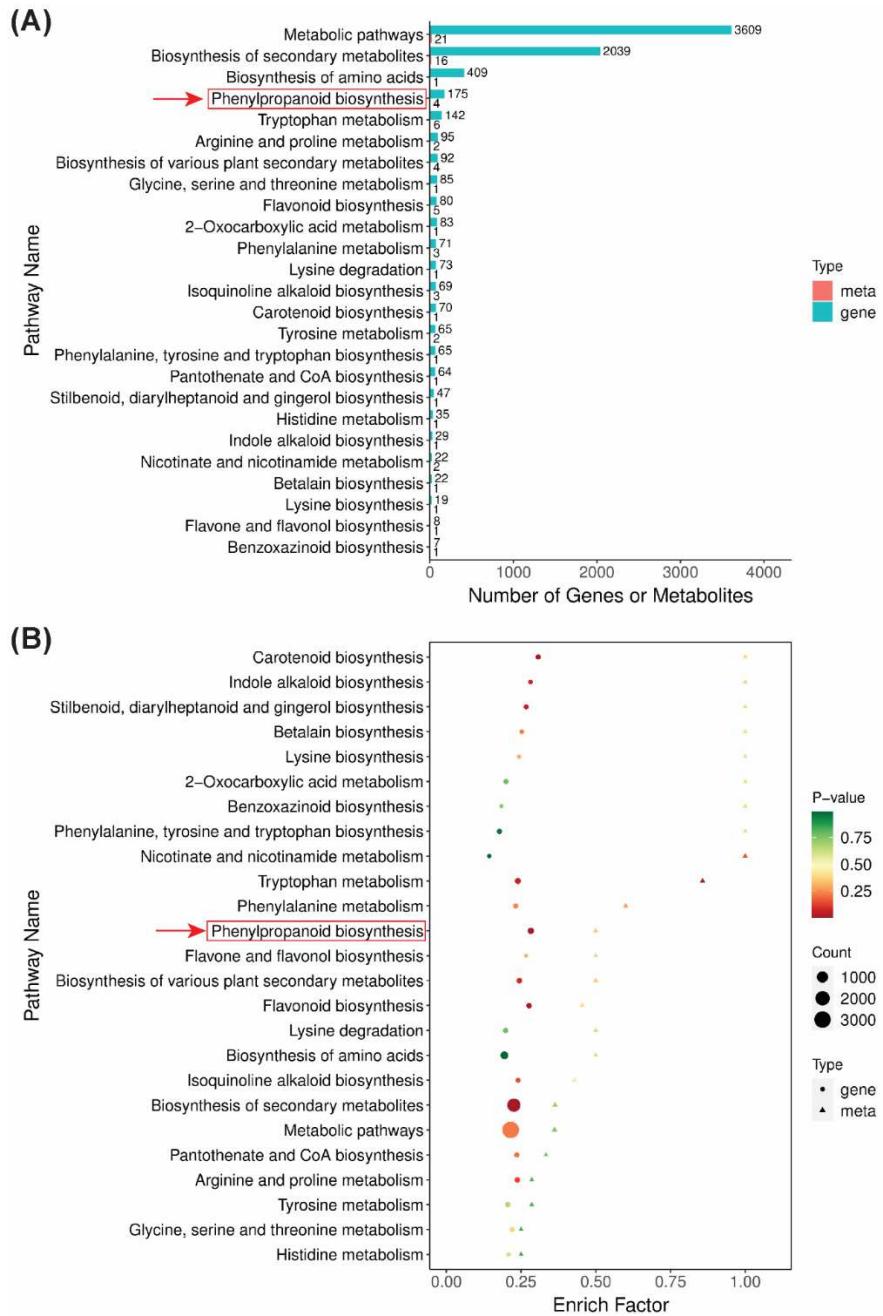
415 A pearson correlation between the environmental variables and the K-means cluster
 416 analysis sub-classes of the DAMs and DEGs demonstrated a complex interplay between them
 417 (Fig. 7). Gene subclass 6 showed high ($p < 0.001$) positive correlation with Se concentration
 418 whereas metabolite subclass 1 showed moderate positive ($p < 0.01$) correlation with soil pH
 419 and week positive correlation ($p < 0.05$) with elevation. Gene subclass 1 showed a weak
 420 negative correlation ($p < 0.05$) with the highest temperature and longitude. The dendrogram
 421 showed that gene subclass 6 and metabolite subclass 2 are highly correlated and grouped.
 422 Metabolite subclass 1 and gene subclass 9 are highly correlated and grouped, which in turn
 423 are related to gene subclass 1.



424
 425 Fig. 7: Correlation heatmap with dendrogram analysis between environmental and spatial
 426 variables vs metabolites and transcriptome k-means analysis. Here, the color from blue to
 427 red indicates negative to positive correlation coefficients, and the asterisk indicates a
 428 significance label.

429 Combined KEGG pathway analysis revealed that the top pathways containing more than
 430 five DAMs were: Metabolic pathways (KO01100), Biosynthesis of secondary metabolites
 431 (KO01110), Phenylpropanoid biosynthesis (KO00940), Tryptophan metabolism (KO00380),
 432 and Flavonoid biosynthesis (KO00941) (Fig. 8A, Table S6). The top pathways containing more
 433 than 100 DEGs were: Metabolic pathways (KO01100), Biosynthesis of secondary metabolites
 434 (KO01110), Biosynthesis of amino acids (KO01230), Biosynthesis of cofactors (KO01240),
 435 Phenylpropanoid biosynthesis (KO00940), Glycerophospholipid metabolism (KO00564),
 436 Tryptophan metabolism (KO00380), and Glutathione metabolism (KO00480) (Fig. 8A, Table
 437 S6). After enrichment analysis of DAMs, six KEGG pathways were identified; following P-
 438 value adjustment, only Flavonoid biosynthesis (KO00941) and Phenylpropanoid biosynthesis

439 (KO00940) remained significant in GX_vs_HN and SC_vs_JX, respectively (Fig. 8B, Table S7).
 440 KEGG enrichment analysis of DEGs revealed twelve KEGG pathways, with only
 441 Phenylpropanoid biosynthesis (KO00940) and Biosynthesis of secondary metabolites
 442 (KO01110) remaining significant in JX_vs_ZJ and SC_vs_ZJ, respectively (Fig. 8B, Table S7).



443
 444 Fig. 8: *L. aurea* transcriptome and metabolome combined KEGG Enrichment Analysis
 445 between JX_vs_ZJ Groups.

446 The bar chart (A) displays the 25 pathways with the highest P-values in multi-omics
 447 analysis, where the bar length represents the number of differential metabolites and
 448 differential genes enriched in each pathway. The bubble diagram (B) shows the top 25

449 pathways with the highest P-values, where the X axis represents the enrichment factor, the
450 bubble shape indicates DEGs or DAMs, with their size representing the number of genes or
451 metabolites, and the color denotes the P-value. To analyze the regulatory network of DAMs,
452 correlation analysis between DEGs and DAMs was performed in each group, revealing
453 67,962 DEGs significantly correlated with 732 DAMs (Table S8). Expression trend analysis
454 showed that multiple metabolites were positively or negatively regulated by several genes
455 (Fig. S13). For example, in GX_vs_HN (Fig. S13A), positive correlations between genes and
456 metabolites were fewer compared to SC_vs_JX (Fig. S13B), JX_vs_ZJ (Fig. S13C), and
457 SC_vs_ZJ (Fig. S13D). KGML analysis across groups revealed that the ath00010 pathway was
458 the most highly clustered, followed by ath00260 and ath00030 in SC_vs_JX (Fig. S14B) and
459 SC_vs_ZJ (Fig. S14D). In GX_vs_HN (Fig. S14A), the second most clustered pathway was
460 ath00020, while in JX_vs_ZJ (Fig. S14C), it was ath00520. The ath00260 pathway was the
461 most upregulated cluster in SC_vs_JX, JX_vs_ZJ, and SC_vs_ZJ. CCA analysis of genes and
462 metabolites related to the KO00941 pathway in GX_vs_HN (Fig. S15A), KO00940 pathway in
463 SC_vs_JX (Fig. S15B), KO01110 pathway in JX_vs_ZJ (Fig. S15C), and KO00940 pathway in
464 SC_vs_ZJ (Fig. S15D) showed strong correlations. In GX_vs_HN, MWSHY0098
465 (Epigallocatechin), MWSHY0037 (Isoliquiritigenin*), and others were down-regulated, while
466 MWS0178 [Chlorogenic acid (3-O-Caffeoylquinic acid)*] was up-regulated. In SC_vs_JX,
467 MWS2212 (Caffeic acid), MWS0906 (Coniferin), and HJN003 (1-O-Sinapoyl- β -D-glucose)
468 were up-regulated, while MWS2208 (Ferulic acid) and others were down-regulated. In
469 SC_vs_ZJ, MWS2212, MWSHY0037, and MWS0178 were up-regulated, and other
470 metabolites like MWS0677 (N-Acetyl-5-hydroxytryptamine) were down-regulated. MWS0178
471 was up-regulated in all but SC_vs_JX, indicating a positive correlation with latitude, while
472 MWS2212 was inversely correlated with latitude. Gene clusters related to their regulation
473 were identified. MWSHY0098 and MWSCX015 (Caffeic aldehyde) were influenced by
474 longitude. Ten metabolites, such as LSKP211262 (Secoisolariciresinol), decreased with lower
475 elevation, and four metabolites, including MW0139629 (Sakuranetin), decreased with
476 increasing latitude and decreasing altitude, suggesting that latitude, altitude, and
477 environmental factors affect *L. aurea* gene expression and metabolism.

478 **4. Discussion**

479 This integrated, multi-omics investigation sheds insight into the geographical and
480 environmental factors that depend on the spatial variation of *L. aurea* (L'Hér.) bulb
481 metabolites and transcriptomes, which have both pharmacological and ecological
482 implications. The metabolomic data revealed considerable differences in the composition of
483 secondary metabolites, including alkaloids, flavonoids, phenolic acids, and terpenoids,
484 among the various samples. The transcriptomic data further confirmed this, revealing
485 location-specific variations in gene expression related to these metabolic pathways. The
486 integration of both data sets highlighted key genes and metabolic pathways that are
487 responsive to environmental cues. For instance, *L. aurea* bulbs from higher altitudes showed
488 an increase in the abundance of flavonoids and terpenoids, which are known to play vital
489 roles in plant defense mechanisms against environmental stress. The transcriptome data
490 indicated upregulation of genes involved in the biosynthesis of these compounds, reinforcing
491 the idea that plants modulate both gene expression and metabolite accumulation to adapt to
492 their environment. Environmental parameters such as temperature, precipitation, soil pH,
493 and Se concentration are also known to affect plant metabolism [25, 26, 32, 33]. In their
494 study M Quan, *et al.* [12] found humus soil with looser texture and lower moisture is more

495 suitable for artificial cultivation of *L. aurea* for increasing photosynthetic rate, biomass, and
496 lycorine content. More detailed observation by J Liang, *et al.* [21] revealed that adequate
497 irrigation is required during vegetative growth, but mild water deficit increases alkaloid
498 content at a later growth stage. Although in our study, annual precipitation showed no
499 correlation with metabolite or gene subclasses; soil Se, pH, and elevation demonstrated
500 positive correlation with different subclasses of metabolites and genes (Fig. 7). Our result
501 also coincides with Y-W Zuo, *et al.* [3] findings of positive correlation between lycorine
502 concentration with soil pH, water content and Se levels which inturn positively influence soil
503 bacterial populations. Similarly, M Quan, *et al.* [12] also showed a positive correlation
504 between soil pH and lycorine from *L. aurea*. Se is an essential trace element known for its
505 role in modulating plant growth and metabolism [48]. The highly positive correlation it
506 showed with gene subclass 6 suggests its potential involvement in gene expression
507 regulation and related metabolic pathways, such as the phenylpropanoid biosynthesis
508 pathway (Fig. 8). G Guo, *et al.* [48] reported Se to positively influence anthocyanin
509 biosynthesis, which is a subsequent product of the phenylpropanoid biosynthesis pathway
510 we found. Similarly, Y-W Zuo, *et al.* [3] also deduced that Se positively influences
511 phenylpropanoid production by reducing oxidative stress. We found gene subclass 1 was
512 significantly negatively correlated with the highest temperature and longitude (Fig. 7), which
513 was also observed in the paired FC bar chart of metabolites, where upregulated metabolites
514 decreased in descending altitude (Fig. S3). Latitude and altitude were reported to cause
515 metabolic differences in various plants, resulting in differential expression of genes,
516 metabolites, and triggering defense mechanisms [23, 24, 28, 31]. The effect of longitude on
517 genes and metabolites was also apparent in the pairwise heat map, where higher longitude
518 showed higher Z-score in secondary metabolites like Alkaloids, Terpenoids, Flavonoids,
519 Phenolic acids, Lignans, and Coumarins (Fig. S4). Longitude can influence the intensity and
520 duration of sunlight exposure, which in turn may affect the production of these compounds,
521 as many of these secondary metabolites were reported to accumulate in high concentration
522 under lower light exposure [49]. However, k-means cluster analysis showed altitude together
523 with other environmental factors might influence *L. aurea* metabolites (Fig. S5) and gene
524 expression (Fig. S11). This was also confirmed from the Venn diagram analysis of metabolite
525 (Fig. S6) and transcript (Fig. S12) compared groups, as it showed the number of unique
526 DAMs and DEGs increases with an increase in altitude and latitude.

527 KEGG pathway analysis of DAMs and DEGs revealed Metabolic pathways (KO01100),
528 Biosynthesis of secondary metabolites (KO01110), Phenylpropanoid biosynthesis (KO00940),
529 and Tryptophan metabolism (KO00380) were commonly enriched (Fig. 8, Table S6 and S7),
530 of which, after p-adjustment, only Phenylpropanoid biosynthesis (KO00940) remained
531 significant. A previous study reported that Se causes differential expression of
532 Phenylpropanoid biosynthesis (KO00940) in *Zea mays* L., affecting anthocyanin biosynthesis
533 [48]. Correlation analysis found 67,962 DEGs significantly associated with 732 DAMs (Table
534 S8) with diverse positive and negative correlations between genes and metabolites across
535 groups (Fig. S13), further demonstrating the influence of environmental factors. Also, the
536 CCA analysis (Fig. S15) again showed pathways such as KO00941, KO00940, KO01110, and
537 KO00940 (in GX_vs_HN, SC_vs_JX, JX_vs_ZJ, and SC_vs_ZJ, respectively) were among the
538 pathways with the strongest correlation. Among the significant metabolites in these
539 pathways, HJN003 (1-O-Sinapoyl-β-D-glucose), MWS2212 (Caffeic acid), and MWSHY0037
540 (Isoliquiritigenin*) were inversely related, but MWS0178 [Chlorogenic acid (3-O-
541 Caffeoylquinic acid)*] was positively associated with the latitude. Whereas MWSHY0098

542 (Epigallocatechin) and MWSCX015 (Caffeic aldehyde) were positively associated with
543 longitude. Ten metabolites, including LSKP211262 (Secoisolariciresinol), dropped with
544 lower height, while four metabolites, including MW0139629 (Sakuranetin), declined with
545 rising latitude and decreasing altitude.

546 1-O-Sinapoyl- β -D-glucose, a glucosyl hydroxycinnamic acid, plays a crucial role in plant
547 metabolism and defense in plants [50, 51]. Caffeic acid is essential for lignin synthesis, as
548 well as turgor pressure, water flux, phototropism, cell expansion, and growth regulation [52].
549 Isoliquiritigenin, a flavonoid biologic from the licorice (*Glycyrrhiza uralensis*) root, is a widely
550 used food and remedy with biological properties including anti-inflammatory, antioxidant,
551 neuroprotective, and anticancer activity against several types of cancers [53]. Chlorogenic
552 acid (3-O-Caffeoylquinic acid)*, the ester of Caffeic acid, is also involved in plant defense
553 (against pathogen, herbivores), stresses (such as UV, heavy metal toxicity, oxidative stress),
554 plays a role in lignin synthesis for wound healing, and has anticancer properties [54]. Other
555 significant metabolites involved in plant defense and lignin synthesis include
556 Epigallocatechin [55], Caffeic aldehyde [56], and Secoisolariciresinol [57], whereas
557 Sakuranetin was primarily involved as a phytoalexin and protection against biotic and abiotic
558 stresses [58]. These findings suggest that latitude, altitude, and environmental factors
559 concurrently affect *L. aurea* gene expression and metabolism, many of which have known
560 therapeutic use. Similar spatial effect on *Lavandula angustifolia* Mill. metabolite outcome
561 was also observed by S Demasi, *et al.* [31]. Our investigation, however, showed the
562 importance of studying the spatial and environmental factors for improving *L. aurea* biologics.

563 5. Conclusions

564 The integration of metabolomics and transcriptomics in this study has provided a holistic
565 understanding of the spatial variations in the biochemical and genetic profiles of *L. aurea*
566 bulbs. Environmental factors such as soil pH and selenium availability were shown to
567 influence both gene expression and metabolite accumulation, highlighting the adaptive
568 nature of *L. aurea* to its environment. Further analysis revealed that spatial factors, such as
569 latitude and altitude, influence metabolic outcome, leading to this adaptation. We reported
570 combinatorial, spatial, and ecological effects on *L. aurea* through a multi-omics study,
571 implicating the necessity of this study for its cultivation and medicinal value. This multi-omics
572 approach not only enhances our understanding of plant-environment interactions but also
573 offers valuable insights into optimizing cultivation practices and improving the quality of
574 medicinal plants. Future studies could focus on further elucidating the specific regulatory
575 networks that link gene expression with metabolite biosynthesis, particularly in response to
576 environmental cues.

577 6. Abbreviations

Abbreviation	Full Form
ALDH	Aldehyde Dehydrogenase
BLAST	Basic Local Alignment Search Tool
CCA	Clusters of Orthologous Groups
CDS	Potential Coding Regions
COG	Orthologous Gene Families in Prokaryotes
DAMs	Differentially Accumulated Metabolites
DEGs	Differentially Expressed Genes

DESeq2	Differential Gene Expression Analysis Based on the Negative Binomial Distribution
ESI	Electrospray Ionization
FDR	False Discovery Rate
FPKM	Fragments Per Kilobase of Transcript Per Million Fragments Mapped
GO	Gene Ontology
HCA	Hierarchical Cluster Analysis
IQR	Interquartile Range
KEGG	Kyoto Encyclopedia of Genes and Genomes
KGML	Kegg Markup Language
KOG	Eukaryotic Orthologous Groups
MISA	Microsatellite Identification Tool
MRM	Multiple Reaction Monitoring
MS/MS	Tandem Mass Spectrometry
MSEA	Metabolite Set Enrichment Analysis
NCBI	National Center for Biotechnology Information
NR	NCBI Non-Redundant Protein Sequences Database
OPLS-DA	Orthogonal Partial Least Squares Discriminant Analysis
PCA	Principal Component Analysis
PCC	Pearson Correlation Coefficients
PPIs	Predicted Protein-Protein Interactions
QQQ	Triple Quadrupole Mass Spectrometry
SSR	Simple Sequence Repeats
STRING	Functional Protein Association Networks
TIC	Total Ion Chromatogram
TrEMBL	Translated EMBL Nucleotide Sequence Database
UPLC	Ultra-Performance Liquid Chromatography
VIP	Variable Importance Plots
WGCNA	Weighted Correlation Network Analysis

578

579 **7. Supplementary Information**

580 **7.1. Supplementary Figures**

581 Fig. S1: OPLS-DA score plot showing *L. aurea* bulb samples from different locations. Panels
 582 (A)–(J) depict pairwise comparisons: (A) GX_vs_HN, (B) GX_vs_JX, (C) GX_vs_ZJ, (D) HN_vs_JX,
 583 (E) HN_vs_ZJ, (F) JX_vs_ZJ, (G) SC_vs_GX, (H) SC_vs_HN, (I) SC_vs_JX, (J) SC_vs_ZJ. The
 584 horizontal axis represents the predicted principal component (variation between groups),
 585 and the vertical axis represents the orthogonal principal component (variation within groups).
 586 Percentages indicate the variance explained by each component. Points represent samples,
 587 with colors denoting group membership.

588 Fig. S2: Dynamic distribution diagram of *L. aurea* metabolite content differences. Panels (A)–
 589 (J) show pairwise comparisons: (A) GX_vs_HN, (B) GX_vs_JX, (C) GX_vs_ZJ, (D) HN_vs_JX, (E)
 590 HN_vs_ZJ, (F) JX_vs_ZJ, (G) SC_vs_GX, (H) SC_vs_HN, (I) SC_vs_JX, and (J) SC_vs_ZJ. The
 591 horizontal axis represents the cumulative number of substances arranged by difference
 592 multiple, while the vertical axis shows the logarithm of the difference multiple (base 2). Each

593 point represents a substance, with green points indicating the top 10 downgraded
594 substances and red points indicating the top 10 upgraded substances.

595 Fig. S3: Fold difference bar chart of *L. aurea* bulb metabolites. Panels (A)-(J) show pairwise
596 comparisons: (A) GX_vs_HN, (B) GX_vs_JX, (C) GX_vs_ZJ, (D) HN_vs_JX, (E) HN_vs_ZJ, (F)
597 JX_vs_ZJ, (G) SC_vs_GX, (H) SC_vs_HN, (I) SC_vs_JX, and (J) SC_vs_ZJ. The horizontal axis
598 represents the \log_2 of differential metabolite fold change (FC), and the vertical axis
599 represents the differential metabolites. Red bars indicate upregulated metabolites, while
600 green bars indicate downregulated metabolites.

601 Fig. S4: Heat map of *L. aurea* bulb metabolite classes. Panels (A)-(J) show pairwise
602 comparisons: (A) GX_vs_HN, (B) GX_vs_JX, (C) GX_vs_ZJ, (D) HN_vs_JX, (E) HN_vs_ZJ, (F)
603 JX_vs_ZJ, (G) SC_vs_GX, (H) SC_vs_HN, (I) SC_vs_JX, and (J) SC_vs_ZJ. The horizontal axis
604 represents sample names, while the vertical axis shows differential metabolite information.
605 The Group indicates sample grouping and colors represent relative metabolite content after
606 standardization (red for high content, green for low content). Class refers to the first-level
607 classification of substances.

608 Fig. S5: K-Means plot of *L. aurea* bulbs differential metabolites. This analysis identified two
609 distinct clusters, with the standardized scores for clusters 1 and 2 presented in panels (A
610 and B). The horizontal axis represents the sample grouping, the vertical axis represents the
611 standardized relative content of metabolites, Sub class represents the metabolite category
612 number with the same change trend.

613 Fig. S6: Venn diagram of differences among groups of *L. aurea* bulbs metabolites. Panel A-E
614 shows ven diagram between different compared groups: (A) GX_vs_ZJ, GX_vs_HN, SC_vs_GX,
615 and GX_vs_JX; (B) HN_vs_ZJ, GX_vs_HN, SC_vs_HN, and HN_vs_JX; (C) JX_vs_ZJ, GX_vs_JX,
616 SC_vs_JX, and HN_vs_JX; (D) JX_vs_ZJ, JX_vs_ZJ, SC_vs_ZJ, and HN_vs_ZJ; (E) SC_vs_ZJ,
617 SC_vs_HN, SC_vs_GX, and SC_vs_JX. Here, each circle in the figure represents a comparison
618 group. The numbers in the overlapping part of the circles represent the number of common
619 differential metabolites between the comparison groups, and the numbers without
620 overlapping parts represent the number of unique differential metabolites in the comparison
621 groups.

622 Fig. S7: Quantitation of *L. aurea* bulbs Gene Expression. (A) The box plot of expression where
623 the horizontal axis in the figure represents different samples; the vertical axis represents the
624 logarithmic value of the sample expression FPKM. This figure measures the expression level
625 of each sample from the perspective of the overall dispersion of the expression. (B) The
626 expression density distribution diagram where the curves of different colors in the figure
627 represent different samples. The horizontal axis of the points on the curve represents the
628 logarithmic value of the corresponding sample FPKM, and the vertical axis of the points
629 represents the probability density. (C) The violin plot of expression where different colors in
630 the figure represent different samples, and the width of each violin graph reflects the number
631 of transcripts at that expression level.

632 Fig. S8: Volcano plot of DEGs of *L. aurea* bulbs from different locations. Panels (A)-(J) show
633 pairwise comparisons: (A) GX_vs_HN, (B) GX_vs_JX, (C) GX_vs_ZJ, (D) HN_vs_JX, (E)
634 HN_vs_ZJ, (F) JX_vs_ZJ, (G) SC_vs_GX, (H) SC_vs_HN, (I) SC_vs_JX, and (J) SC_vs_ZJ. Here,
635 the horizontal axis represents the fold change of gene expression, and the vertical axis
636 represents the significance level of differentially expressed genes. Red dots represent

637 upregulated differentially expressed genes, green dots represent down-regulated
638 differentially expressed genes, and gray dots represent non-differentially expressed genes.

639 Fig. S9: Radar charts depicting differentially expressed genes (DEGs) of *L. aurea* bulbs from
640 different locations. Panels (A)–(J) show pairwise comparisons: (A) GX_vs_HN, (B) GX_vs_JX,
641 (C) GX_vs_ZJ, (D) HN_vs_JX, (E) HN_vs_ZJ, (F) JX_vs_ZJ, (G) SC_vs_GX, (H) SC_vs_HN, (I)
642 SC_vs_JX, and (J) SC_vs_ZJ. Each point represents a gene, and its position on the chart
643 reflects the magnitude of the log2 fold change (log2FC) of the gene's expression across the
644 two compared locations.

645 Fig. S10: Heatmap of differential gene clustering analysis for *L. aurea* bulbs from different
646 locations. Panels (A)–(J) show pairwise comparisons: (A) GX_vs_HN, (B) GX_vs_JX, (C)
647 GX_vs_ZJ, (D) HN_vs_JX, (E) HN_vs_ZJ, (F) JX_vs_ZJ, (G) SC_vs_GX, (H) SC_vs_HN, (I)
648 SC_vs_JX, and (J) SC_vs_ZJ. The horizontal axis shows sample names and hierarchical
649 clustering results, while the vertical axis represents differentially expressed genes with their
650 respective hierarchical clustering results. Red indicates high gene expression, and blue
651 indicates low gene expression.

652 Fig. S11: K-Means plot of *L. aurea* bulbs differential genes. Panels (A)–(J) show different
653 subclass: (A) Subclass 1, (B) Subclass 2, (C) Subclass 3, (D) Subclass 4, (E) Subclass 5, (F)
654 Subclass 6, (G) Subclass 7, (H) Subclass 8, (I) Subclass 9, and (J) Subclass 10. Here, the
655 horizontal axis represents the sample, and the vertical axis represents the standardized
656 expression level.

657 Fig. S12: Venn diagram of DEGs of *L. aurea* bulbs. Panels (A)–(E) show Ven diagram between
658 different sample comparisons: (A) GX_vs_ZJ, GX_vs_HN, SC_vs_GX, and GX_vs_JX; (B)
659 HN_vs_ZJ, GX_vs_HN, SC_vs_HN, and HN_vs_JX; (C) JX_vs_ZJ, GX_vs_JX, SC_vs_JX, and
660 HN_vs_JX; (D) JX_vs_ZJ, GX_vs_JX, SC_vs_ZJ, and HN_vs_ZJ; (E) SC_vs_ZJ, SC_vs_HN,
661 SC_vs_GX, and SC_vs_JX. Here, the non-overlapping area of the Venn diagram represents
662 the differential genes unique to the differential grouping, and the overlapping area
663 represents the differential genes shared by several overlapping differential groups.

664 Fig. S13: Expression trend analysis in GX_vs_HN (A), SC_vs_JX (B), JX_vs_ZJ (C), and
665 SC_vs_ZJ (D). Here, the dots and boxes in the figure represent metabolites and genes,
666 respectively. Red indicates upregulated genes/metabolites, green indicates down-regulated
667 genes/metabolites, and blue indicates both upregulated and down-regulated genes.

668 Fig. S14: KGML analysis network diagram of the gene and the metabolites to the pathway
669 between GX_vs_HN (A), SC_vs_JX (B), JX_vs_ZJ (C), and SC_vs_ZJ (D). The squares in the
670 figure represent genes or gene products, circles represent metabolites, and diamonds
671 represent pathway names. Red indicates that genes, gene products, or metabolites are
672 upregulated, and green indicates that genes, gene products, or metabolites are
673 downregulated.

674 Fig. S15: CCA analysis of the gene and the metabolites to the KO00941 pathway in GX_vs_HN
675 (A), KO00940 pathway in SC_vs_JX (B), KO001110 pathway in JX_vs_ZJ (C), and KO00940
676 pathway in SC_vs_ZJ (D). The figure uses a cross to distinguish four regions. In the same
677 region, the farther from the origin, the closer the distance, and the higher the correlation.
678 Metabolites are marked purple, and genes are marked in red. If there are too many
679 substances of a certain type, they will be displayed as dots to avoid text overlapping.

680 **7.2. Supplementary Tables**

681 Table S1: Metabolite quantity statistics
682 Table S2: Differentially Enriched Metabolites
683 Table S3: DEM KEGG summary
684 Table S4: Differentially Enriched Genes
685 Table S5: DEG KEGG summary
686 Table S6: Combined KEGG pathways
687 Table S7: Combined KEGG enrichment analysis
688 Table S8: Combined Correlation Analysis

689 **8. Declarations**

690 **Funding**

691 This work was funded by the National Natural Science Foundation of China (32070367),
692 the Hunan Provincial Natural Science Foundation (2024JJ7367), and the earmarked fund for
693 HARS.

694 **Availability of data and materials**

695 All acquired raw sequencing data from *Lycoris aurea* [Taxonomy ID: 152838]
696 transcriptome and gene expression are submitted to the SRA at the NCBI database under
697 accession number PRJNA1328393
698 (<https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1328393>) SUB14823235. We
699 summarized the datasets used in this manuscript and presented them as supporting
700 information for publication. The corresponding author will make any other relevant
701 information available upon reasonable request.

702 **Ethics approval and consent to participate**

703 Not applicable.

704 **Consent for publication**

705 Not applicable.

706 **Clinical trial number**

707 Not applicable.

708 **Authors' contributions**

709 Conceptualization and original draft, SL, LS, TZ; methodology, LS, TY; software and
710 visualization, SL, TZ; formal analysis, TY; supervision, review & editing, LS, QM; project
711 administration and funding acquisition, LS, QM

712 **Acknowledgments**

713 Not applicable.

714 **Competing interests**

715 The authors declare no conflict of interest.

716 **9. References**

- 717 1. Peng Y, Wei J, Yang L. The complete chloroplast genome of *Lycoris aurea* (L'Hér.)
718 Herb. Mitochondrial DNA Part B Resources. 2020; 5:788-789.
719 <https://doi.org/10.1080/23802359.2020.1715296>.
- 720 2. Wang Z, Shu X, Wang N, Cheng G, Zhang F. 'E Huang Xiao Ran': A New Ornamental
721 *Lycoris straminea* Cultivar. HortScience. 2023; 58:105-106.
722 <https://doi.org/10.21273/HORTSCI16925-22>.
- 723 3. Zuo Y-W, Quan M-H, Liu G-H, Zhang X, Long N-N, You S-Q, et al. Multi-Omics Analysis
724 Reveals Molecular Responses of Alkaloid Content Variations in *Lycoris aurea* Across
725 Different Locations. Plant, Cell & Environment. 2024;1-12.
726 <https://doi.org/10.1111/pce.15187>.
- 727 4. Salachna P, Piechocki R. Comparison of nutrient content in bulbs of Japanese red
728 spider lily (*Lycoris radiata*) and golden spider lily (*Lycoris aurea*), ornamental and
729 medicinal plants. World News of Natural Sciences. 2019;75-82.
- 730 5. Huang N, Cui L, Wang J, Cai Y, Li X, Xie X, et al. 'Jia Qi Ru Meng': A New Ornamental
731 *Lycoris radiata* × *Lycoris aurea* Cultivar. HortScience. 2024; 59(7):1037-1039.
732 <https://doi.org/10.21273/hortsci17943-24>.
- 733 6. Yamaji F, Ohsawa TA. Breaking-bud pollination: a new pollination process in partially
734 opened flowers by small bees. Journal of Plant Research. 2015; 128(5):803-811.
735 <https://doi.org/10.1007/s10265-015-0741-8>.
- 736 7. Shi T, Yue Y, Shi M, Chen M, Yang X, Wang L. Exploration of Floral Volatile Organic
737 Compounds in Six Typical *Lycoris* taxa by GC-MS. Plants (Basel). 2019; 8(10).
738 <https://doi.org/10.3390/plants8100422>.
- 739 8. Duke JA, Ayensu ES. Medicinal plants of China. Algonac, Mich.: Reference
740 Publications; 1985.
- 741 9. Sun B, Wang P, Wang R, Li Y, Xu S. Molecular Cloning and Characterization of a
742 meta/para-O-Methyltransferase from *Lycoris aurea*. Int J Mol Sci. 2018; 19(7).
743 <https://doi.org/10.3390/ijms19071911>.
- 744 10. Yang Y, Huang S-X, Zhao Y-M, Zhao Q-S, Sun H-D. Alkaloids from the Bulbs of *Lycoris*
745 *aurea*. Helvetica Chimica Acta. 2005; 88(9):2550-2553.
746 <https://doi.org/10.1002/hlca.200590193>.
- 747 11. Wu Z. Flora Reipublicae Popularis Sinicae, 1 edn: Science Press; 1998.
- 748 12. Quan M, Liang J. The influences of four types of soil on the growth, physiological and
749 biochemical characteristics of *Lycoris aurea* (L' Her.) Herb. Scientific Reports. 2017;
750 7:43284. <https://doi.org/10.1038/srep43284>.
- 751 13. Song J-H, Zhang L, Song Y. Alkaloids from *Lycoris aurea* and their cytotoxicities
752 against the head and neck squamous cell carcinoma. Fitoterapia. 2014; 95:121-126.
753 <https://doi.org/10.1016/j.fitote.2014.03.006>.
- 754 14. Lamoral-Theys D, Andolfi A, Van Goetsenoven G, Cimmino A, Le Calvé B, Wauthoz
755 N, et al. Lycorine, the main phenanthridine Amaryllidaceae alkaloid, exhibits
756 significant antitumor activity in cancer cells that display resistance to proapoptotic
757 stimuli: an investigation of structure-activity relationship and mechanistic insight.
758 Journal of Medicinal Chemistry. 2009; 52(20):6244-6256.
759 <https://doi.org/10.1021/jm901031h>.
- 760 15. Lamoral-Theys D, Decaestecker C, Mathieu V, Dubois J, Kornienko A, Kiss R, et al.
761 Lycorine and its derivatives for anticancer drug design. Mini-Reviews in Medicinal
762 Chemistry. 2010; 10(1):41-50. <https://doi.org/10.2174/13895571079112604>.

763 16. Jingting K, Chao J. The mechanism of galanthamine regulating IL-1 β /IL-1RA ratio to
764 ameliorate inflammatory microenvironment. *Journal of Chinese Pharmaceutical*
765 *Sciences*. 2022; 31(10):773. <https://doi.org/10.5246/jcps.2022.10.067>.

766 17. Lima JA, Hamerski L. Alkaloids as Potential Multi-Target Drugs to Treat Alzheimer's
767 Disease. In: *Studies in Natural Products Chemistry*. Edited by Atta ur R, vol. 61:
768 Elsevier; 2019: 301-334. <https://doi.org/10.1016/B978-0-444-64183-0.00008-7>.

769 18. Vezenkov LT, Tsekova DS, Kostadinova I, Mihaylova R, Vassilev NG, Danchev ND.
770 Synthesis of New Galanthamine-Peptide Derivatives Designed for Prevention and
771 Treatment of Alzheimer's Disease. *Curr Alzheimer Res.* 2019; 16(3):183-192.
772 <https://doi.org/10.2174/156720501666190228123923>.

773 19. Jiang Y, Xia N, Li X, Shen W, Liang L, Wang C, et al. Molecular cloning and
774 characterization of a phenylalanine ammonia-lyase gene (LrPAL) from *Lycoris radiata*.
775 *Molecular Biology Reports*. 2011; 38(3):1935-1940. <https://doi.org/10.1007/s11033-010-0314-9>.

777 20. Liu J-S, Li Y-K, Li J, Li Y, Liu Z-T, Zhou Z-X, et al. Ascorbate peroxidase catalyzes
778 synthesis of protocatechualdehyde from p-hydroxybenzaldehyde in *Lycoris aurea*.
779 *Gene*. 2024; 927:148697. <https://doi.org/10.1016/j.gene.2024.148697>.

780 21. Liang J, Quan M, She C, He A, Xiang X, Cao F. Effects of drought stress on growth,
781 photosynthesis and alkaloid accumulation of *Lycoris aurea*. *Pakistan Journal of Botany*.
782 2020; 52(4). [http://dx.doi.org/10.30848/PJB2020-4\(15\)](http://dx.doi.org/10.30848/PJB2020-4(15)).

783 22. Xu S, Jiang M, Fu J, Liang L, Xia B, Wang R. Physiological and Antioxidant Parameters
784 in Two *Lycoris* Species as Influenced by Water Deficit Stress. *HortScience*. 2015;
785 50(11):1702-1708. <https://doi.org/10.21273/hortsci.50.11.1702>.

786 23. Zaffar S, Khan I, Zaffar A, Kamili A. Altitudinal Variation in Alkaloid Composition of
787 *Hyoscyamus niger*: A study with reference to Kashmir region of Himalayas.
788 *International Journal of Advances in Scientific Research*. 2018; 4:13.
789 <https://doi.org/10.7439/ijasr.v4i3.4728>.

790 24. Salmore AK, Hunter MD. Elevational Trends in Defense Chemistry, Vegetation, and
791 Reproduction in *Sanguinaria canadensis*. *Journal of Chemical Ecology*. 2001;
792 27(9):1713-1727. <https://doi.org/10.1023/A:1010411122739>.

793 25. Zobayed SM, Afreen F, Kozai T. Temperature stress can alter the photosynthetic
794 efficiency and secondary metabolite concentrations in St. John's wort. *Plant Physiol
795 Biochem*. 2005; 43(10-11):977-984. <https://doi.org/10.1016/j.plaphy.2005.07.013>.

796 26. Selmar D, Kleinwächter M. Influencing the product quality by deliberately applying
797 drought stress during the cultivation of medicinal plants. *Industrial Crops and
798 Products*. 2013; 42:558-566. <https://doi.org/10.1016/j.indcrop.2012.06.020>.

799 27. Li Y, Kong D, Fu Y, Sussman MR, Wu H. The effect of developmental and
800 environmental factors on secondary metabolites in medicinal plants. *Plant Physiology
801 and Biochemistry*. 2020; 148:80-89. <https://doi.org/10.1016/j.plaphy.2020.01.006>.

802 28. Popescu R, Kopp B. The genus Rhododendron: An ethnopharmacological and
803 toxicological review. *Journal of ethnopharmacology*. 2013.
804 <https://doi.org/10.1016/j.jep.2013.02.022>.

805 29. Sun Y, Guo R, Geng Y, Shang H, Guo X, Wu Y, et al. Longitudinal Distribution Map of
806 the Active Components and Endophytic Fungi in *Angelica sinensis* (Oliv.) Diels Root
807 and Their Potential Correlations. *Metabolites*. 2024; 14(1).
808 <https://doi.org/10.3390/metabo14010048>.

809 30. Sampaio BL, Edrada-Ebel R, Da Costa FB. Effect of the environment on the secondary
810 metabolic profile of *Tithonia diversifolia*: a model for environmental metabolomics of
811 plants. *Scientific Reports*. 2016; 6(1):29265. <https://doi.org/10.1038/srep29265>.

812 31. Demasi S, Caser M, Lonati M, Cioni PL, Pistelli L, Najar B, et al. Latitude and Altitude
813 Influence Secondary Metabolite Production in Peripheral Alpine Populations of the
814 Mediterranean Species *Lavandula angustifolia* Mill. *Frontiers in Plant Science*. 2018;
815 9:983. <https://doi.org/10.3389/fpls.2018.00983>.

816 32. Chen S, Liang Z, Webster R, Zhang G, Zhou Y, Teng H, et al. A high-resolution map
817 of soil pH in China made by hybrid modelling of sparse soil data and environmental
818 covariates and its implications for pollution. *Science of The Total Environment*. 2019;
819 655:273-283. <https://doi.org/10.1016/j.scitotenv.2018.11.230>.

820 33. Dinh QT, Cui Z, Huang J, Tran TAT, Wang D, Yang W, et al. Selenium distribution in
821 the Chinese environment and its relationship with human health: A review.
822 *Environment International*. 2018; 112:294-309.
823 <https://doi.org/10.1016/j.envint.2017.12.035>.

824 34. Chen W, Gong L, Guo Z, Wang W, Zhang H, Liu X, et al. A Novel Integrated Method
825 for Large-Scale Detection, Identification, and Quantification of Widely Targeted
826 Metabolites: Application in the Study of Rice Metabolomics. *Molecular Plant*. 2013;
827 6(6):1769-1780. <https://doi.org/10.1093/mp/sst080>.

828 35. Fraga CG, Clowers BH, Moore RJ, Zink EM. Signature-Discovery Approach for Sample
829 Matching of a Nerve-Agent Precursor Using Liquid Chromatography–Mass
830 Spectrometry, XCMS, and Chemometrics. *Analytical Chemistry*. 2010; 82(10):4165-
831 4173. <https://doi.org/10.1021/ac1003568>.

832 36. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor.
833 *Bioinformatics*. 2018; 34(17):i884-i890.
834 <https://doi.org/10.1093/bioinformatics/bty560>.

835 37. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length
836 transcriptome assembly from RNA-Seq data without a reference genome. *Nature
837 Biotechnology*. 2011; 29(7):644-652. <https://doi.org/10.1038/nbt.1883>.

838 38. Davidson NM, Oshlack A. Corset: enabling differential gene expression analysis for
839 de novoassembled transcriptomes. *Genome Biology*. 2014; 15(7):410.
840 <https://doi.org/10.1186/s13059-014-0410-6>.

841 39. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND.
842 *Nature Methods*. 2015; 12(1):59-60. <https://doi.org/10.1038/nmeth.3176>.

843 40. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with
844 or without a reference genome. *BMC Bioinformatics*. 2011; 12(1):323.
845 <https://doi.org/10.1186/1471-2105-12-323>.

846 41. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for
847 RNA-seq data with DESeq2. *Genome Biology*. 2014; 15(12):550.
848 <https://doi.org/10.1186/s13059-014-0550-8>.

849 42. Varet H, Brillet-Guéguen L, Coppée JY, Dillies MA. SARTools: A DESeq2- and EdgeR-
850 Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data. *PLoS One*.
851 2016; 11(6):e0157022. <https://doi.org/10.1371/journal.pone.0157022>.

852 43. Zheng Y, Jiao C, Sun H, Rosli HG, Pombo MA, Zhang P, et al. iTAK: A Program for
853 Genome-wide Prediction and Classification of Plant Transcription Factors,
854 Transcriptional Regulators, and Protein Kinases. *Molecular Plant*. 2016; 9(12):1667-
855 1670. <https://doi.org/10.1016/j.molp.2016.09.014>.

856 44. Thiel T, Michalek W, Varshney RK, Graner A. Exploiting EST databases for the
857 development and characterization of gene-derived SSR-markers in barley (*Hordeum*
858 *vulgare* L.). *Theor Appl Genet.* 2003; 106(3):411-422. <https://doi.org/10.1007/s00122-002-1031-0>.

860 45. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network
861 analysis. *BMC Bioinformatics.* 2008; 9(1):559. <https://doi.org/10.1186/1471-2105-9-559>.

863 46. González I, Déjean S, Martin PGP, Baccini A. CCA: An R Package to Extend Canonical
864 Correlation Analysis. *Journal of Statistical Software.* 2008; 23:1-14.
865 <https://doi.org/10.18637/jss.v023.i12>.

866 47. Jozefczuk S, Klie S, Catchpole G, Szymanski J, Cuadros-Inostroza A, Steinhauser D, et
867 al. Metabolomic and transcriptomic stress response of *Escherichia coli*. *Molecular*
868 *Systems Biology.* 2010; 6:364. <https://doi.org/10.1038/msb.2010.18>.

869 48. Guo G, Wang Y, Zhang B, Yu H, Li L, Cao G, et al. Comparative transcriptomic and
870 metabolomic analysis reveals mechanisms of selenium-regulated anthocyanin
871 synthesis in waxy maize (*Zea mays* L.). *Frontiers in Plant Science.* 2024; Volume 15 -
872 2024. <https://doi.org/10.3389/fpls.2024.1466756>.

873 49. Zhang S, Zhang L, Zou H, Qiu L, Zheng Y, Yang D, et al. Effects of Light on Secondary
874 Metabolite Biosynthesis in Medicinal Plants. *Frontiers in Plant Science.* 2021; Volume
875 12 - 2021. <https://doi.org/10.3389/fpls.2021.781236>.

876 50. Hussain R, Kim H, Khurshid M, Akhtar M, Linthorst H. Overexpression of AtWRKY50
877 is correlated with enhanced production of sinapic derivatives in *Arabidopsis*.
878 *Metabolomics.* 2018; 14. <https://doi.org/10.1007/s11306-018-1317-0>.

879 51. Bi B, Tang J, Han S, Guo J, Miao Y. Sinapic acid or its derivatives interfere with
880 abscisic acid homeostasis during *Arabidopsis thaliana* seed germination. *BMC Plant*
881 *Biology.* 2017; 17(1):99. <https://doi.org/10.1186/s12870-017-1048-9>.

882 52. Mughal A, Jabeen N, Ashraf K, Sultan K, Farhan M, Hussain MI, et al. Exploring the
883 role of caffeic acid in mitigating abiotic stresses in plants: A review. *Plant Stress.* 2024;
884 12:100487. <https://doi.org/10.1016/j.stress.2024.100487>.

885 53. Sameiyan E, Hayes AW, Karimi G. The effect of medicinal plants on multiple drug
886 resistance through autophagy: A review of in vitro studies. *European Journal of*
887 *Pharmacology.* 2019; 852:244-253. <https://doi.org/10.1016/j.ejphar.2019.04.001>.

888 54. Bender O, Atalay A. Polyphenol chlorogenic acid, antioxidant profile, and breast
889 cancer. In: *Cancer* (Second Edition). Edited by Preedy VR, Patel VB. San Diego:
890 Academic Press; 2021: 311-321. <https://doi.org/10.1016/B978-0-12-819547-5.00028-6>.

892 55. Ahammed GJ, Wu Y, Wang Y, Guo T, Shamsy R, Li X. Epigallocatechin-3-Gallate
893 (EGCG): A unique secondary metabolite with diverse roles in plant-environment
894 interaction. *Environmental and Experimental Botany.* 2023; 209:105299.
895 <https://doi.org/10.1016/j.envexpbot.2023.105299>.

896 56. Tu Y, Rochfort S, Liu Z, Ran Y, Griffith M, Badenhorst P, et al. Functional analyses of
897 caffeic acid O-Methyltransferase and Cinnamoyl-CoA-reductase genes from perennial
898 ryegrass (*Lolium perenne*). *Plant Cell.* 2010; 22(10):3357-3373.
899 <https://doi.org/10.1105/tpc.109.072827>.

900 57. Yoder SC, Lancaster SM, Hullar MAJ, Lampe JW. Gut Microbial Metabolism of Plant
901 Lignans: Influence on Human Health. In: *Diet-Microbe Interactions in the Gut*. Edited
902 by Tuohy K, Del Rio D. San Diego: Academic Press; 2015: 103-117.
903 <https://doi.org/10.1016/B978-0-12-407825-3.00007-1>.

904 58. Zhao Y, Hu J, Zhou Z, Li L, Zhang X, He Y, et al. Biofortified Rice Provides Rich
905 Sakuranetin in Endosperm. *Rice*. 2024; 17(1):19. [https://doi.org/10.1186/s12284-024-
906 00697-w](https://doi.org/10.1186/s12284-024-00697-w).

907

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [SupplementaryFigures.docx](#)
- [SupplementaryTables.xlsx](#)