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Abstract

Background:

With stunning golden-yellow flowers, the perennial bulbous plant Golden Spider Lily
[Lycoris aurea (L'Hér.)] thrives in temperate to subtropical regions of East Asia. Besides the
ornamental value, L. aurea is also praised as a source of various biologics and a major
pollinator attractant. The adaptability and resilience of L. aurea allow it to endure drought,
waterlogging, and suboptimal soil conditions. However, the effect of habitat and ecology on
L. aurea metabolites remains unexplored.

Method

This study investigates the spatial and environmental influences on the metabolites and
gene expression of L. aurea using a combined metabolomic and transcriptomic approach.
Bulbs were collected from five locations in China, selected for their diverse ecological and
environmental conditions, including variations in temperature, precipitation, soil pH, and
selenium concentration. The metabolites in the bulb extracts were analyzed using UPLC-
MS/MS, and RNA sequencing was performed to capture gene expression data. The
correlation between environmental factors and metabolite accumulation, as well as gene
expression, was analyzed to understand the plant’s adaptive mechanisms.

Results

The analysis revealed significant variations in the metabolite and gene expression
profiles of L. aurea bulbs from different locations. Alkaloids, flavonoids, and phenolic acids
were among the most abundant metabolites identified, with geographic differences
influencing their abundance. For example, higher-altitude samples exhibited increased levels
of flavonoids and terpenoids, compounds associated with plant defense mechanisms. Gene
expression patterns mirrored these findings, with upregulation of genes involved in
secondary metabolite biosynthesis in plants from higher altitudes. Environmental factors
such as soil pH, selenium concentration, and altitude were found to play significant roles in
shaping both the metabolite composition and gene expression patterns of the plant.
Metabolites related to plant defense, lignin production, biotic and abiotic stresses were
affected mainly by spatial heterogeneity.

Conclusion

This study highlights the impact of environmental and spatial factors on the biochemical
and genetic profiles of L. aurea, showing how the plant adapts to varying conditions. Altitude,
latitude, and soil composition are key determinants of its metabolic output. These findings
provide insights into optimizing cultivation and enhancing the medicinal properties of the
plant. Future research should investigate the regulatory networks that link gene expression
to metabolite biosynthesis in response to environmental cues.

Keywords: Spatial, ecological, plant adaptation, golden spider lIily, metabolomics,
transcriptomics
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1. Background

Lycoris aurea (L'Hér.), commonly known as the Golden Spider Lily, is a well-known
member of the Amaryllidaceae family [1-4]. Native to East Asia, especially southern China,
Taiwan, and Japan, this perennial bulbous plant is distinguished by its vivid golden-yellow
blooms that blossom in late summer or early fall, often preceding its elongated, slender,
leafless stems [3, 5]. The petals of its flower are arched backward like spider legs, which has
led to its colloquial designation, 'Spider Lily' [5]. In addition to its visual allure, L. aurea has
considerable cultural, medicinal, and ecological significance, making it a focal point in
botanical and pharmacological research [3, 5]. In its habitat, the nectar-rich L. aurea flowers
attract various pollinators, such as bees and butterflies, providing essential pollination
services [6, 7]. In traditional Chinese medicine, L. aurea is highly valued for its rich
composition of bioactive alkaloids [3]. For instance, the pulverized bulbs of L. aurea have
been used as a poultice for treating burns, scalds, and ulcers in Hubei, China [8]. Additionally,
L. aurea generates many bioactive alkaloids, notably Lycorine, Homolycorine, and other
associated chemicals, with most research documenting them in its ovary [9] and bulbs [4, 5,
10-13]. These metabolites are responsible for the plant's biological activity and are of interest
in traditional medicine, as they are believed to possess antitumor, antimicrobial, and anti-
inflammatory properties. Lycorine showed antiviral and anticancer activity [14, 15],
Galanthamine has anti-inflammatory properties [16] and alleviates the neuropsychiatric
symptoms of Alzheimer's [17, 18]. Though other Lycoris sp. ubiquitously synthesizes these
compounds, their amount varies between species [4] and location [3], which can be
attributed to several genes from alkaloid and phenylpropanoid biosynthesis pathways such
as Aldehyde Dehydrogenase (ALDH), Phenylalanine Ammonia-Lyase (PAL), and Norbelladine
4’-O-Methyltransferase (N4OMT) [9, 19, 20], as well as ecological conditions such as soil
quality, sunlight, rainfall, and soil microbiota [4, 5, 7, 12, 21, 22].

L. aurea flourishes in temperate to subtropical climates, in shaded and humid habitats
with optimal drainage and sufficient irrigation [4, 5]. They often grow in sheltered wet slopes
near streams in mountainous regions, on the edges of woods, rice paddies, and plantations
[22]. However, their distinctive pre-foliar blooming reduces nutrient requirements, enabling
them to thrive in various other environments [3]. Additionally, its bulbous roots store
nutrients and energy [5], allowing it to endure drought, waterlogging, and suboptimal soil
conditions and to regenerate after each blooming season [22]. So, the herb is also well-suited
to diverse altitudes, temperatures, light, water, and soil conditions, exhibiting resilience
against pests and diseases [5]. Since soil composition affects the nutritional and metabolic
profile of L. aurea bulbs [11], other agroecological, seasonal, and spatial factors may have a
similar impact [3, 4, 23]. For example, suboptimal irrigation during the latter development
stage of L. aurea was reported to enhance bulb alkaloid concentration [21]. Other factors
affecting plant alkaloid production include age, microbial attack, and grazing [23]. For
instance, with a decrease in latitude, herbivore and pathogen pressure on Anguinaria
canadensis increases, while the diversity and toxicity of alkaloids increase [24]. In contrast,
plants grown at higher altitudes, where temperatures are cooler and sunlight is more intense,
may produce different concentrations or types of metabolites to adapt to harsher conditions
[25]. Similarly, geographic differences in soil composition, humidity, and sunlight can
influence the synthesis of specific alkaloids, leading to variations in the medicinal and toxic
properties of the plant across regions [26].
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Plants from niches with higher rainfall, such as the subtropical areas of Taiwan, may
exhibit a different metabolic composition compared to those growing in drier, temperate
zones in China or Japan [27]. When determining the best places to get bioactive molecules
from, scientists must consider how different altitudes, latitudes, and longitudes affect the
plant's metabolism [24, 28, 29]. Temperate, subtropical, and higher-altitude environments
differ ecologically and climatically, leading to metabolic variations that affect the chemical
composition of plants, as well as their growth patterns, blooming cycles, and overall health
[23, 27, 30]. For instance, Lycorine, the principal alkaloid of L. aurea, is higher in temperate
areas and increases with soil pH, moisture content, and Selenium (Se) levels, while those in
humid or tropical climates may produce different alkaloids [3]. Studying spatial effects on a
plant's metabolic differences will provide valuable insights into its adaptability and its
secondary metabolites' role in defense [24]. Moreover, it could guide the development of
optimal cultivation strategies to improve the yield of valuable bioactive chemicals [3]. By
understanding how altitude, latitude, and soil composition affect a plant's metabolic
output, we can tap into therapeutic potential while limiting toxicity [31]. Since L. aurea is
used as a medicinal plant in Ayurvedic and Chinese medicine practice, the pharmacological
properties of its various metabolites have been well studied, and some have even been
licensed as contemporary therapeutics [21]. Conversely, despite a few restricted studies
examining the effects of soil, water, altitude, and latitude on the plant, the influence of
location on L. aurea remains mostly enigmatic [3, 12, 21, 31]. Therefore, to maintain the
sustainability of the L. aurea ecosystem and cultivate it for medical purposes, we devised a
method to understand how the plant adjusts its metabolism to different geographic situations
by examining the metabolome and transcriptome of the plant collected from various locations
in China and performing a conjoint analysis.

2. Method

2.1.Sample Collection

Sampling sites were selected from the natural habitats of L. aurea to capture a diverse
array of variables affecting alkaloid production, encompassing spatial factors like latitude,
longitude, and elevation [29, 31], alongside environmental parameters such as temperature,
precipitation, soil pH, and Se concentration [25, 26, 32, 33]. We selected five sampling sites
within the natural habitat of L. aurea in China, characterized by diverse variables (Fig. 1A).
L. aurea bulbs were collected in triplicate from five locations in China between the 7th and
24th of August 2023 (Fig. 1B). Sampling locations included Baize city (105° 42" , 24° 35’ ,

877m) from Guangxi province (GX), Ganzhou city (114° 35" ,24° 47" ,446.5m) from Jiangxi
province (JX), Huaihua city (110° 10" , 27° 49" , 277m) from Hunan province (HN), Lashan
city (103° 44’ , 29° 56 , 1168.9m) from Sichuan province (SC), and Shanxing city (120°

57" ,29° 38" , 189m) from Zhejiang province (Z]) (Fig. 1C). Bulb samples were collected in

rdance with the R lations on Wild Plant Pr ion of the P le's R lic of Chin
h Law of the P le's R lic of Chin nd relevant 1 lr lation

permissions for collection were obtained from Hunan Provincial Forestry Bureau, with the
permit number No. 222 of 2025. Specimens were identified by Prof. Zeng Hanyuan, and

v her imens wer i in the Huaih niversity with ion number
HHU?2022-8. Collected Bbulbs were washed, flash-frozen, labelled, and stored at -80° C

before extraction.
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Fig. 1: Collection of L. aurea bulb samples.

(A) Spatial and environmental analysis of L. aurea natural niches in China revealed five
suitable sampling locations characterized by diverse factors. Maps illustrate the lowest and
highest temperatures (°C), annual precipitation (mm), selenium (Se) (mg/kg), and soil pH,
which may influence alkaloid production in L. aurea. (B) Image of L. aurea (L'Hér.), or Golden
Spider Lily, featuring its distinctive bulbous root. (C) The sampling sites of L. aurea are
indicated by colored circles, with circle size reflecting elevation.

2.2.Metabolomics Analysis
2.2.1. Sample Preparation and Extraction

Bulbs were freeze-dried (Scientz-100F) and ground (30 Hz, 1.5 min) using a planetary
ball mill (MM 400, Retsch). 50 mg of powder was weighed (MS105DM) and dissolved in 1200
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pL of pre-cooled (—20 °C) 70% methanol aqueous internal standard extract. The mixture was
vortexed every 30 min for 30 sec (6 times). After centrifugation (12000 rpm, 3 min), the
supernatant was filtered through a 0.22 pym membrane and stored in an injection vial for
UPLC-MS/MS analysis.

2.2.2. Metabolomic Analysis

Metabolites in L. aurea (L'Hér.) bulbs extracts were analyzed by Wuhan MetWare
Biotechnology Co., Ltd. (Wuhan, China) using a UPLC-ESI-MS/MS system (UPLC, ExionLC™
AD, https://sciex.com.cn/) and a Tandem mass spectrometry (MS/MS) system
(https://sciex.com.cn/), following their established protocols [34]. The UPLC system used an
Agilent SB-C18 1.8 ym, 2.1 mm x 100 mm column with mobile phases A (ultrapure water
with 0.1% formic acid) and B (acetonitrile with 0.1% formic acid). The gradient started at 5%
B for 0 min, increased to 95% B by 9 min, and reverted to 5% B at 11.1 min. Flow rate: 0.35
mL/min; column temperature: 40°C; injection volume: 2 pL. ESI source temperature was set
at 500°C, with ion spray voltages of +5500 V (positive) and -4500 V (negative). Gas I, 11, and
curtain were maintained at 50, 60, and 25 psi, respectively, under conditions of high collision-
induced ionization. The QQQ scan in MRM mode utilized nitrogen as the collision gas, with
optimized DP and CE for each ion pair.

2.2.3. Metabolomics Data Acquisition and Quantitative Analysis

Metabolite mass spectrometry data from various samples were analyzed, integrating the
peak areas of all chromatographic peaks. The mass spectrometry peaks corresponding to the
same metabolite across different samples were also integrated and corrected [35]. Mass
spectrometry data were processed with Analyst 1.6.3 (AB SCIEX, Concord, Ontario, Canada).
Metabolites from the samples were analyzed qualitatively and quantitatively via mass
spectrometry, utilizing the local metabolic database. MultiQuant software (Framingham,
Massachusetts, USA) is used to open the mass spectrometry file for the integration and
correction of chromatographic peaks. Quality control (QC) analysis was conducted on
samples prepared by mixing extracts, assessing repeatability through overlapping TIC
graphs under identical processing methods.

Data were scaled using unit variance (UV) and analyzed via unsupervised principal
component analysis (PCA) with the prcomp function in R (www.r-project.org). Hierarchical
cluster analysis (HCA) of samples and metabolites was visualized as heatmaps with
dendrograms, and Pearson correlation coefficients (PCC) between samples were calculated
using the cor function in R and displayed as heatmaps. Both HCA and PCC analyses were
performed using the R package ComplexHeatmap. In HCA, metabolite signal intensities,
normalized and scaled to UV, were represented with a color spectrum.

Two groups were compared by identifying differential metabolites based on variable
importance projection (VIP > 1) and absolute log fold change (|Log;FC| = 1.0). VIP values
were derived from orthogonal partial least squares discriminant analysis (OPLS-DA) using
score and permutation plots, with the R package MetaboAnalystR. Data were log-
transformed (logz) and mean-centered before OPLS-DA. A permutation test (200
permutations) was performed to prevent overfitting.

2.2.4. Metabolite Annotation and Enrichment Analysis

Identified metabolites were annotated using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) Compound database (http://www.kegg.jp/kegg/compound/) and mapped to
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the KEGG Pathway database (http://www.kegg.jp/kegg/pathway.html). Pathways with
significantly regulated metabolites were analyzed using metabolite set enrichment analysis
(MSEA), and p-values from the hypergeometric test determined their significance.

2.3.Transcriptomics Analysis
2.3.1. RNA Extraction, cDNA Library Construction, and RNA-Sequencing

Three biological replicates from each location were used for RNA-sequencing analysis,
performed by MetWare Biotechnology Co., Ltd. (Wuhan, China), following their standard
protocol. Total RNA was extracted using the RNeasy Mini Kit (QIAGEN, Germany). RNA
integrity was assessed by agarose gel electrophoresis, and RNA concentration was measured
using the Qubit® RNA Assay Kit (Life Technologies, USA). RNA quality was verified using
the Qsep400 Bioanalyzer (Bioptic, Taiwan). cDNA was synthesized from 1 pg of RNA per
sample, and sequencing libraries were prepared using the NEBNext® UltraTM RNA Library
Prep Kit for Illumina® (Nebraska, USA). The indexed samples were clustered on the cBot
Cluster Generation System (Illumina®) and sequenced on an Illumina platform, generating
150 bp paired-end reads.

2.3.2. Transcriptome Data Acquisition and QC Analysis

The initial dataset was cleaned using the 'fastp' tools [36] to remove adapter sequences,
reads with >10% N content, sequencing reads exceeding 10% of the base count, and reads
with >50% low-quality bases (Q=20). Clean reads were used for all subsequent analyses.
Transcriptome assembly was performed using "Trinity’
(https://github.com/trinityrnaseq/trinityrnaseq) [37], and the 'Corset' tool [38] reorganized
transcripts into 'UniGene' clusters. Potential coding regions (CDS) were identified using
"TransDecoder' (https://github.com/TransDecoder/).

2.3.3. Gene Functional Annotation

The Unigene sequence was compared with KEGG, Nr (NCBI non-redundant protein
sequences), Swiss-Prot, GO, COG/KOG, and TrEMBL databases using DIAMOND [39]
BLASTX. The amino acid sequence of the Unigene was predicted and further compared with
the Pfam (Protein family) database using HMMER (http://hmmer.org/) to obtain annotation
information.

2.3.4. Gene Expression Quantification and Differential Analysis

Gene expression levels were estimated using the RSEM software [40], and FPKM
(Fragments Per Kilobase of transcript per Million fragments mapped) was calculated based
on gene length. Differential expressions between biological replicates were analyzed using
DESeq2 [41, 42], with the Benjamini-Hochberg method applied to correct for multiple
hypothesis testing, yielding the false discovery rate (FDR). Differentially expressed genes
(DEGs) were identified with |log,Fold Change| = 1 and FDR < 0.05.

Enrichment analysis was performed using the hypergeometric test, with KEGG and GO
analysis based on pathways and terms, respectively. Transcription factor analysis was done
using iTAK [43]. DEGs were subjected to DIAMOND BLASTX against the genome of a related
species, and predicted protein-protein interactions (PPIs) were obtained from the STRING
database (http://string-db.org/). Simple sequence repeats (SSRs) were identified using MISA
[44], and primers were designed using Primer3
(http://primer3.sourceforge.net/releases.php). Weighted correlation network analysis
(WGCNA) was performed using the WGCNA R Package [45].
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2.4.Combined Metabolome and Transcriptome Analysis

Combined metabolome and transcriptome analyses were conducted on the DEGs and
differentially accumulated metabolites (DAMs) to assess pathway enrichment. PCA was
performed to visualize distinctions across sample groups, followed by KEGG pathway, KEGG
enrichment, KGML, and Canonical Correlation Analysis (CCA) [46]. Expression trends and
correlations were analyzed using gene-metabolite networks with a Pearson Correlation
Coefficient (PCC) > 0.8 and p-value < 0.05 in each sample group [47].

3. Results

3.1.Spatial Influence on I. aurea Bulbs Metabolome

We analyzed the metabolomes of 70% methanolic extracts from L. aurea bulbs across 15
samples from 5 geographical locations in China, identifying 731 metabolites (Table S1).
These included 36.11% Alkaloids, 9.3% Flavonoids, 5.75% Lignans and Coumarins, 18.19%
Phenolic acids, 1.92% Quinones, 12.59% Terpenoids, and 16.14% other compounds (Fig. 2A).
OPLS-DA analysis (Fig. S1) effectively discriminated groups based on measured features,
with strong predictive ability (Q?) and excellent model fit (R?), identifying 546 differential
accumulated metabolites (DAMSs) with VIP > 1 and |Log,FC| X 1.0 (Table S2). 3D PCA (Fig.

2B) showed significant variance among groups, with biological replicates clustering closely.
The hierarchical clustered heat map (Fig. 2C) confirmed differential metabolite abundance
and identified biologically relevant pathways. These findings suggest location-specific
differences in the metabolomic profiles of L. aurea bulbs, potentially influenced by
environmental or genetic factors.
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Fig. 2: L. aureabulbs metabolomic analysis. (A) Ring diagram of metabolite class composition,
with each color representing a metabolite category and the block area indicating the
category's proportion. (B) 3D PCA of metabolites, with PC1, PC2, and PC3 representing the
first, second, and third principal components, respectively, and percentages indicating each
component’s variance explained; each point represents a sample, with color denoting group
membership. (C) Hierarchical clustered heatmap of metabolites across different
experimental groups, with the sample names on the X-axis, metabolites on the Y-axis, and
color gradients representing Z-scores for each data point.

Table 1: Summary of DAMs across different compared groups.

Group All significant Down- Up-
name differences regulated regulated
CX vs H 171 120 51

N
GX vs JX 238 161 77
GX vs Z] 283 211 72
HN vs JX 229 115 114
HN vs Z] 216 160 56
JX vs Z] 208 208 90
SCvs G 203 104 99

X
SC vs H 211 146 65

N
SC vs JX 226 156 70
SC vs 7] 319 244 75

The fold change (FC) values of metabolites in the comparison group were calculated to
highlight metabolic differences, with the top 10 up-regulated and down-regulated
metabolites presented in a dynamic distribution diagram (Fig. S2). FC values across groups
were compared, and bar charts of the top 20 metabolites with the highest FC between groups
indicated that L. aurea bulb metabolites decrease with lower altitude and latitude but
increase with higher longitude (Fig. S3). A clustering heatmap of differential metabolites
revealed that samples from lower altitude/latitude or higher longitude (HN, JX, Z]) exhibited
higher Z-scores in Alkaloids, Terpenoids, and Flavonoids compared to SC or GX (Fig. S4). GX
vs JX showed higher Z-scores in Phenolic acids, Flavonoids, Lignans, and Coumarins.

UV scaling followed by K-means cluster analysis showed the trend of the relative content
of differential metabolites in different groups in two subclasses. In subclass 1, 259
metabolites were ranked in the following order of abundance Z]J>HN>GX>]JX>SC, clearly
influenced by the altitude (Fig. S5A). In subclass 2, however, the order for the remaining 721
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metabolites was JX>HN>SC>GX>Z]J (Fig. S5B). This result showed that geographic location
and altitude do not necessarily predict cluster similarity, indicating that local environmental
factors may outweigh simple spatial distance in shaping phenotypic or molecular traits.
However, the Venn diagram analysis of the DAM showed the highest number of common
DAM when Z] was compared to others (Fig. S6D), but the lowest number of common DAM
was when GX was compared to others (Fig. S6A).

The KEGG analysis revealed several significantly enriched (p<0.05) DAM-associated
metabolic pathways across the compared groups. However, after multiple comparison
corrections, only the Flavonoid Biosynthesis (KO00941) pathway (P=0.017, cluster
frequency 42.86%) in the GX vs HN comparison and the Phenylpropanoid Biosynthesis
(KO00940) pathway (P=0.028, cluster frequency 25%) in the SC vs JX comparison remained
significant (Table S3).

3.2.Spatial Influence on L. aurea Bulbs Gene Expression

Transcriptome sequencing of 15 samples from 5 locations generated 103.42 Gb of clean
data, with each sample producing at least 6 Gb of clean reads and Q30 base percentages
over 93%, indicating high sequencing quality. The assembly yielded a database of 189,456
unigenes with an average length of 1,060 bp, N50 of 1,478 bp, and N90 of 488 bp. Alignment
with KEGG, NR, Swiss-Prot, GO, COG/KOG, and Trembl identified 77,301, 102,320, 73,923,
88,317, 62,084, and 101,653 homologs, covering 40.8%, 54.01%, 39.02%, 46.62%, 32.77%,
and 53.66% of the sequences, respectively (Fig. 4A). Pfam comparison revealed 54,940
homologs with 29% coverage, and NR BLAST hits showed a 48.06% match with Asparagus
officinalis (Fig. 4B). GO classification revealed enriched terms in biological process (cellular
process, metabolic process, response to stimulus), cellular component (cellular anatomical
entity, protein-containing complex), and molecular function [binding, catalytic activity, ATP
(Adenosine triphosphate)-dependent activity] (Fig. 4C). KOG analysis categorized unigenes
into 25 functional classes, with the largest group being "general function prediction only" (R,
14,692 unigenes), followed by "translation, ribosomal structure and biogenesis" (J, 7,163
unigenes), and "function unknown" (S, 5,536 unigenes), along with categories such as
"posttranslational modification" (O), "transcription" (K), and "replication, recombination and
repair" (L) (Fig. 4D).
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databases. (B) Annotated species distribution in the NR database. (C) GO classification
histogram, where the horizontal axis represents secondary GO entries, and the vertical axis
represents the number of genes annotated in each GO entry. (D) KOG classification chart,
where the horizontal axis represents functional classification codes of KOG IDs, and the
vertical axis represents the number of genes in each category. Different colors indicate
different classifications, and the legend provides the code with its functional description.

FPKM analysis revealed 60600 DEGs with |log;Fold Change| >= 1 and FDR < 0.05
(Table 2) (Table S4). There was a significant difference in up-and down-regulated genes
between groups, suggesting a location-specific difference in the L. aurea gene expression.

Table 2: Summary of DEGs across different compared groups.

Group All significant Down- Up-
name differences regulated regulated
GX vs H 11253 5619 5634
N
GX vs JX 23871 12569 11302
GX vs 7] 20792 9468 11324
HN vs JX 22693 11686 11007
HN vs 7] 20763 9288 11475
JX vs 7] 27933 12232 15701
SC vs G 15376 8337 7039
X
SC vs H 17867 9593 8274
N
SC vs JX 27846 15503 12343
SC vs 7] 24879 12166 12713

The FPKM distribution box plot showed consistent gene expression with narrow IQRs in
the ZJ, JX, HN, and GX groups (Fig. S7A). In contrast, the SC group displayed greater
variability and a wider IQR, indicating gene expression fluctuation. This was further
confirmed by the FPKM density distribution (Fig. S7B) and violin plot (Fig. S7C). Pearson
correlation analysis (Fig. 4A) revealed strong consistency in gene expression within most
groups, especially Z]J, JX, HN, and GX, while SC showed weaker correlations, indicating
higher variability. 3D PCA analysis (Fig. 4B) showed that PC1 (19.41%), PC2 (15.09%), and
PC3 (12.76%) captured significant variance, with distinct clustering of ZJ and JX, overlap in
SC and GX, and separation of the HN group.
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Fig. 4: L. aurea bulbs Gene Expression Pattern. (A) The sample correlation plot, where
Pearson’s Correlation Coefficient (r) is used to evaluate the correlation between biological
replicates. The closer the absolute value of r is to 1 (the redder the color), the stronger the
correlation between the two replicate samples. (B) 3D PCA plot of gene expression where
PC1, PC2, and PC3 represent the first, second, and third principal components, and the
percentage represents the explanation rate of the principal component for the data set; each
point in the figure represents a sample, and the same color represents samples in the same
group.

The volcano plots (Fig. S8) revealed that most clusters were non-regulated across
comparisons, with several key clusters showing significant upregulation or downregulation,
particularly in the order JX vs Z] > SC vs JX > SC vs ZJ > GX vs_JX. The highest number
of significantly up-regulated genes was observed in the JX vs Z] comparison (15,701). The
SC group exhibited a higher proportion of non-regulated genes, especially in the SC vs GX
(45,224) and SC vs ZJ (35,721) comparisons. The radar chart (Fig. S9) identified clusters
with substantial fold changes between comparisons. In the JX vs Z] comparison, clusters
such as 92568.3 and 90745.2 showed significant fold changes, while in SC vs JX, clusters
90372.1 and 63903.15 were notable. Similarly, in SC vs Z]J, clusters 50696.3 and 93131.15
exhibited large fold changes, and in GX vs JX, clusters 93131.19 and 63903.15 were
significantly changed. Notably, cluster 90372.1 appeared in six comparisons (GX vs JX,
GX vs 7], HN vs JX, HN vs Z]J, SC vs JX, and SC vs_Z]J), and cluster 51222.2 was found in
four comparisons (GX vs JX, GX vs Z], SC vs JX, and SC vs Z]J). Several other top clusters
were also common across two or three comparisons.

The heatmap color bar and hierarchical clustering dendrogram between groups (Fig.
S10) showed distinct gene expression patterns between L. aurea bulbs from different
locations, with clear group separation. Some genes varied within the same group, suggesting
environmental or genetic influences. Clustering revealed that SC was most closely related to
GX, followed by Z]J, HN, and JX (Fig. 5).
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Fig. 5: Differential gene clustering heat map of L. aurea bulbs from different locations. Here,
the horizontal axis represents the sample name and hierarchical clustering results, and the
vertical axis represents the differentially expressed genes and hierarchical clustering results.
Red represents high expression, and blue represents low expression.

K-means cluster analysis of 60,600 DEGs revealed distinct gene expression patterns
across 10 subclasses (Fig. S11). In subclass 1, 7,006 DEGs were ranked in the order
Z]>]X>HN>GX>SC (Fig. S11A), while in subclass 2, 8,501 DEGs were ranked
SC>GX>HN=>]X>Z]J (Fig. S11B), indicating altitude influence. Sharp peaks in subclasses 3,
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5, and 6 (Fig. S11C, E, F) were observed in HN; Z] and SC in subclass 4 (Fig. S11D); GX in
subclasses 7 and 8 (Fig. S11G, H); and JX in subclasses 9 and 10 (Fig. S111, J), suggesting
environmental or other factors. The Venn diagram showed the highest number of unique
DEGs in JX compared to other groups (Fig. S12C), while GX had the fewest unique DEGs
(Fig. S12A).

KEGG analysis of DEGs identified several significant DEG-associated pathways (p<0.05)
across the compared groups, with 10 pathways remaining significant after P-value
adjustment (Table S5). The Protein processing in endoplasmic reticulum pathway (KO04141)
was significant in SC vs JX (P = 0.0000003901), HN vs Z]J (P = 0.0000008429), GX vs HN
(P = 0.0000074452), SC vs HN (P = 0.0000490227), JX vs Z] (P = 0.0000816909),
HN vs JX (P = 0.0002185169), GX vs JX (P = 0.0085480832), and SC vs Z] (P =
0.0091569183). The Ribosome pathway (KO03010) was significant in SC vs HN (P =
0.0000039810) and HN vs Z] (P = 0.0001579419). The Starch and sucrose metabolism
pathway (KO00500) was significant in SC vs GX (P = 0.0067584993) and GX vs JX (P =
0.0113422941). The Cutin, suberine, and wax biosynthesis pathway (KO00073) was
significant in SC vs GX (P = 0.0004739915) and SC vs Z] (P = 0.0195882035). Other
significant pathways included the Spliceosome pathway (KO03040) in HN vs Z] (P =
0.0000519557), Biosynthesis of secondary metabolites (KO01110) in SC vs Z] (P =
0.0096887642), Biosynthesis of unsaturated fatty acids (KO01040) in SC vs HN (P =
0.0066542895), Phenylpropanoid biosynthesis (KO00940) in JX vs ZJ (P = 0.0037528038),
Linoleic acid metabolism (KO00591) in GX vs HN (P = 0.0002745666), and Glutathione
metabolism (KO00480) in GX vs Z] (P = 0.0199734744).

3.3.Integrated Analysis

Combined PCA analysis of the transcriptome and metabolome showed distinct clustering
of samples, particularly from Z] and SC (Fig. 6A), with clear separation between regions,
indicating unique gene expression profiles. Metabolome data (Fig. 6B) also revealed
differentiation, with ZJ displaying a unique metabolic profile, while HN and GX clustered
closely together. JX samples showed overlapping and distinct separation patterns,
suggesting varying metabolic signatures. Overall, Z] exhibited the most pronounced
differences in both transcriptomic and metabolomic profiles.
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Fig. 6: 2D PCA analysis of L. aurea transcriptomes (A) and metabolomes (B). The horizontal
axis represents principal component 1, the vertical axis represents principal component 2,
and points of different colors represent samples in different groups.

A pearson correlation between the environmental variables and the K-means cluster
analysis sub-classes of the DAMs and DEGs demonstrated a complex interplay between them
(Fig. 7). Gene subclass 6 showed high (p < 0.001) positive correlation with Se concentration
whereas metabolite subclass 1 showed moderate positive (p < 0.01) correlation with soil pH
and week positive correlation (p < 0.05) with elevation. Gene subclass 1 showed a weak
negative correlation (p < 0.05) with the highest temperature and longitude. The dendrogram
showed that gene subclass 6 and metabolite subclass 2 are highly correlated and grouped.
Metabolite subclass 1 and gene subclass 9 are highly correlated and grouped, which in turn
are related to gene subclass 1.
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Fig. 7: Correlation heatmap with dendrogram analysis between environmental and spatial
variables vs metabolites and transcriptome k-means analysis. Here, the color from blue to
red indicates negative to positive correlation coefficients, and the asterisk indicates a
significance label.

Combined KEGG pathway analysis revealed that the top pathways containing more than
five DAMs were: Metabolic pathways (KO01100), Biosynthesis of secondary metabolites
(KO01110), Phenylpropanoid biosynthesis (KO00940), Tryptophan metabolism (KO00380),
and Flavonoid biosynthesis (KO00941) (Fig. 8A, Table S6). The top pathways containing more
than 100 DEGs were: Metabolic pathways (KO01100), Biosynthesis of secondary metabolites
(KO01110), Biosynthesis of amino acids (KO01230), Biosynthesis of cofactors (KO01240),
Phenylpropanoid biosynthesis (KO00940), Glycerophospholipid metabolism (KO00564),
Tryptophan metabolism (KO00380), and Glutathione metabolism (KO00480) (Fig. 8A, Table
S6). After enrichment analysis of DAMs, six KEGG pathways were identified; following P-
value adjustment, only Flavonoid biosynthesis (KO00941) and Phenylpropanoid biosynthesis
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(KO00940) remained significant in GX vs HN and SC vs_JX, respectively (Fig. 8B, Table S7).
KEGG enrichment analysis of DEGs revealed twelve KEGG pathways, with only
Phenylpropanoid biosynthesis (KO00940) and Biosynthesis of secondary metabolites
(KO01110) remaining significant in JX vs ZJ and SC vs_Z], respectively (Fig. 8B, Table S7).
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Fig. 8: L. aurea transcriptome and metabolome combined KEGG Enrichment Analysis
between JX vs Z] Groups.

The bar chart (A) displays the 25 pathways with the highest P-values in multi-omics
analysis, where the bar length represents the number of differential metabolites and
differential genes enriched in each pathway. The bubble diagram (B) shows the top 25
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pathways with the highest P-values, where the X axis represents the enrichment factor, the
bubble shape indicates DEGs or DAMs, with their size representing the number of genes or
metabolites, and the color denotes the P-value. To analyze the regulatory network of DAMs,
correlation analysis between DEGs and DAMs was performed in each group, revealing
67,962 DEGs significantly correlated with 732 DAMs (Table S8). Expression trend analysis
showed that multiple metabolites were positively or negatively regulated by several genes
(Fig. S13). For example, in GX vs HN (Fig. S13A), positive correlations between genes and
metabolites were fewer compared to SC vs JX (Fig. S13B), JX vs ZJ (Fig. S13C), and
SC vs 7] (Fig. S13D). KGML analysis across groups revealed that the ath00010 pathway was
the most highly clustered, followed by ath00260 and ath00030 in SC vs JX (Fig. S14B) and
SC vs 7] (Fig. S14D). In GX vs HN (Fig. S14A), the second most clustered pathway was
ath00020, while in JX vs ZJ (Fig. S14C), it was ath00520. The ath00260 pathway was the
most upregulated cluster in SC vs JX, JX vs ZJ, and SC vs Z]. CCA analysis of genes and
metabolites related to the KO00941 pathway in GX vs HN (Fig. S15A), KO00940 pathway in
SC vs JX (Fig. S15B), KO01110 pathway in JX vs ZJ (Fig. S15C), and KO00940 pathway in
SC vs 7Z] (Fig. S15D) showed strong correlations. In GX vs HN, MWSHY0098
(Epigallocatechin), MWSHY0037 (Isoliquiritigenin*), and others were down-regulated, while
MWS0178 [Chlorogenic acid (3-O-Caffeoylquinic acid)*] was up-regulated. In SC vs JX,
MWS2212 (Caffeic acid), MWS0906 (Coniferin), and HJNO0O3 (1-O-Sinapoyl-B-D-glucose)
were up-regulated, while MWS2208 (Ferulic acid) and others were down-regulated. In
SC vs 7], MWS2212, MWSHY0037, and MWS0178 were up-regulated, and other
metabolites like MWS0677 (N-Acetyl-5-hydroxytryptamine) were down-regulated. MWS0178
was up-regulated in all but SC vs JX, indicating a positive correlation with latitude, while
MWS2212 was inversely correlated with latitude. Gene clusters related to their regulation
were identified. MWSHY0098 and MWSCXO015 (Caffeic aldehyde) were influenced by
longitude. Ten metabolites, such as LSKP211262 (Secoisolariciresinol), decreased with lower
elevation, and four metabolites, including MWO0139629 (Sakuranetin), decreased with
increasing latitude and decreasing altitude, suggesting that latitude, altitude, and
environmental factors affect L. aurea gene expression and metabolism.

4. Discussion

This integrated, multi-omics investigation sheds insight into the geographical and
environmental factors that depend on the spatial variation of L. aurea (L'Hér.) bulb
metabolites and transcriptomes, which have both pharmacological and ecological
implications. The metabolomic data revealed considerable differences in the composition of
secondary metabolites, including alkaloids, flavonoids, phenolic acids, and terpenoids,
among the various samples. The transcriptomic data further confirmed this, revealing
location-specific variations in gene expression related to these metabolic pathways. The
integration of both data sets highlighted key genes and metabolic pathways that are
responsive to environmental cues. For instance, L. aurea bulbs from higher altitudes showed
an increase in the abundance of flavonoids and terpenoids, which are known to play vital
roles in plant defense mechanisms against environmental stress. The transcriptome data
indicated upregulation of genes involved in the biosynthesis of these compounds, reinforcing
the idea that plants modulate both gene expression and metabolite accumulation to adapt to
their environment. Environmental parameters such as temperature, precipitation, soil pH,
and Se concentration are also known to affect plant metabolism [25, 26, 32, 33]. In their
study M Quan, et al. [12] found humus soil with looser texture and lower moisture is more
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suitable for artificial cultivation of L. aurea for increasing photosynthetic rate, biomass, and
lycorine content. More detailed observation by J Liang, et al [21] revealed that adequate
irrigation is required during vegetative growth, but mild water deficit increases alkaloid
content at a later growth stage. Although in our study, annual precipitation showed no
correlation with metabolite or gene subclasses; soil Se, pH, and elevation demonstrated
positive correlation with different subclasses of metabolites and genes (Fig. 7). Our result
also coincides with Y-W Zuo, et al [3] findings of positive correlation between lycorine
concentration with soil pH, water content and Se levels which inturn positively influence soil
bacterial populations. Similarly, M Quan, et al [12] also showed a positive correlation
between soil pH and lycorine from L. aurea. Se is an essential trace element known for its
role in modulating plant growth and metabolism [48]. The highly positive correlation it
showed with gene subclass 6 suggests its potential involvement in gene expression
regulation and related metabolic pathways, such as the phenylpropanoid biosynthesis
pathway (Fig. 8). G Guo, et al [48] reported Se to positively influence anthocyanin
biosynthesis, which is a subsequent product of the phenylpropanoid biosynthesis pathway
we found. Similarly, Y-W Zuo, et al [3] also deduced that Se positively influences
phenylpropanoid production by reducing oxidative stress. We found gene subclass 1 was
significantly negatively correlated with the highest temperature and longitude (Fig. 7), which
was also observed in the paired FC bar chart of metabolites, where upregulated metabolites
decreased in descending altitude (Fig. S3). Latitude and altitude were reported to cause
metabolic differences in various plants, resulting in differential expression of genes,
metabolites, and triggering defense mechanisms [23, 24, 28, 31]. The effect of longitude on
genes and metabolites was also apparent in the pairwise heat map, where higher longitude
showed higher Z-score in secondary metabolites like Alkaloids, Terpenoids, Flavonoids,
Phenolic acids, Lignans, and Coumarins (Fig. S4). Longitude can influence the intensity and
duration of sunlight exposure, which in turn may affect the production of these compounds,
as many of these secondary metabolites were reported to accumulate in high concentration
under lower light exposure [49]. However, k-means cluster analysis showed altitude together
with other environmental factors might influence L. aurea metabolites (Fig. S5) and gene
expression (Fig. S11). This was also confirmed from the Venn diagram analysis of metabolite
(Fig. S6) and transcript (Fig. S12) compared groups, as it showed the number of unique
DAMs and DEGs increases with an increase in altitude and latitude.

KEGG pathway analysis of DAMs and DEGs revealed Metabolic pathways (KO01100),
Biosynthesis of secondary metabolites (KO01110), Phenylpropanoid biosynthesis (KO00940),
and Tryptophan metabolism (KO00380) were commonly enriched (Fig. 8, Table S6 and S7),
of which, after p-adjustment, only Phenylpropanoid biosynthesis (KO00940) remained
significant. A previous study reported that Se causes differential expression of
Phenylpropanoid biosynthesis (KO00940) in Zea mays L., affecting anthocyanin biosynthesis
[48]. Correlation analysis found 67,962 DEGs significantly associated with 732 DAMs (Table
S8) with diverse positive and negative correlations between genes and metabolites across
groups (Fig. S13), further demonstrating the influence of environmental factors. Also, the
CCA analysis (Fig. S15) again showed pathways such as KO00941, KO00940, KO01110, and
KO00940 (in GX vs HN, SC vs JX, JX vs ZJ, and SC _vs Z], respectively) were among the
pathways with the strongest correlation. Among the significant metabolites in these
pathways, HJNOO3 (1-O-Sinapoyl-B-D-glucose), MWS2212 (Caffeic acid), and MWSHY0037
(Isoliquiritigenin*) were inversely related, but MWS0178 [Chlorogenic acid (3-O-
Caffeoylquinic acid)*] was positively associated with the latitude. Whereas MWSHY0098
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(Epigallocatechin) and MWSCXO015 (Caffeic aldehyde) were positively associated with
longitude. Ten metabolites, including LSKP211262 (Secoisolariciresinol), dropped with
lower height, while four metabolites, including MW0139629 (Sakuranetin), declined with
rising latitude and decreasing altitude.

1-O-Sinapoyl-B-D-glucose, a glucosyl hydroxycinnamic acid, plays a crucial role in plant
metabolism and defense in plants [50, 51]. Caffeic acid is essential for lignin synthesis, as
well as turgor pressure, water flux, phototropism, cell expansion, and growth regulation [52].
Isoliquiritigenin, a flavonoid biologic from the licorice (Glycyrrhiza uralensis) root, is a widely
used food and remedy with biological properties including anti-inflammatory, antioxidant,
neuroprotective, and anticancer activity against several types of cancers [53]. Chlorogenic
acid (3-O-Caffeoylquinic acid)*, the ester of Caffeic acid, is also involved in plant defense
(against pathogen, herbivores), stresses (such as UV, heavy metal toxicity, oxidative stress),
plays a role in lignin synthesis for wound healing, and has anticancer properties [54]. Other
significant metabolites involved in plant defense and lignin synthesis include
Epigallocatechin [55], Caffeic aldehyde [56], and Secoisolariciresinol [57], whereas
Sakuranetin was primarily involved as a phytoalexin and protection against biotic and abiotic
stresses [58]. These findings suggest that latitude, altitude, and environmental factors
concurrently affect L. aurea gene expression and metabolism, many of which have known
therapeutic use. Similar spatial effect on Lavandula angustifolia Mill. metabolite outcome
was also observed by S Demasi, et al [31]. Our investigation, however, showed the
importance of studying the spatial and environmental factors for improving L. aurea biologics.

5. Conclusions

The integration of metabolomics and transcriptomics in this study has provided a holistic
understanding of the spatial variations in the biochemical and genetic profiles of L. aurea
bulbs. Environmental factors such as soil pH and selenium availability were shown to
influence both gene expression and metabolite accumulation, highlighting the adaptive
nature of L. aurea to its environment. Further analysis revealed that spatial factors, such as
latitude and altitude, influence metabolic outcome, leading to this adaptation. We reported
combinatorial, spatial, and ecological effects on L. aurea through a multi-omics study,
implicating the necessity of this study for its cultivation and medicinal value. This multi-omics
approach not only enhances our understanding of plant-environment interactions but also
offers valuable insights into optimizing cultivation practices and improving the quality of
medicinal plants. Future studies could focus on further elucidating the specific regulatory
networks that link gene expression with metabolite biosynthesis, particularly in response to
environmental cues.

6. Abbreviations

Abbreviation Full Form

ALDH Aldehyde Dehydrogenase

BLAST Basic Local Alignment Search Tool

CCA Clusters of Orthologous Groups

CDS Potential Coding Regions

COG Orthologous Gene Families in Prokaryotes
DAMs Differentially Accumulated Metabolites

DEGs Differentially Expressed Genes
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Differential Gene Expression Analysis Based on the Negative

DESeq? Binomial Distribution

ESI Electrospray Ionization

FDR False Discovery Rate

FPKM Fragments Per Kilobase of Transcript Per Million Fragments
Mapped

GO Gene Ontology

HCA Hierarchical Cluster Analysis

IQR Interquartile Range

KEGG Kyoto Encyclopedia of Genes and Genomes

KGML Kegg Markup Language

KOG Eukaryotic Orthologous Groups

MISA Microsatellite Identification Tool

MRM Multiple Reaction Monitoring

MS/MS Tandem Mass Spectrometry

MSEA Metabolite Set Enrichment Analysis

NCBI National Center for Biotechnology Information

NR NCBI Non-Redundant Protein Sequences Database

OPLS-DA Orthogonal Partial Least Squares Discriminant Analysis

PCA Principal Component Analysis

PCC Pearson Correlation Coefficients

PPIs Predicted Protein-Protein Interactions

QQQ Triple Quadrupole Mass Spectrometry

SSR Simple Sequence Repeats

STRING Functional Protein Association Networks

TIC Total Ion Chromatogram

TrEMBL Translated EMBL Nucleotide Sequence Database

UPLC Ultra-Performance Liquid Chromatography

VIP Variable Importance Plots

WGCNA Weighted Correlation Network Analysis

7. Supplementary Information
7.1.Supplementary Figures

Fig. S1: OPLS-DA score plot showing L. aurea bulb samples from different locations. Panels
(A)-(J) depict pairwise comparisons: (A) GX vs HN, (B) GX vs JX, (C) GX vs_ZJ, (D) HN vs JX,
(E) HN vs 7], (F) JX vs 7], (G) SC vs GX, (H) SC vs HN, (I) SC vs JX, (J) SC vs Z]J. The
horizontal axis represents the predicted principal component (variation between groups),
and the vertical axis represents the orthogonal principal component (variation within groups).
Percentages indicate the variance explained by each component. Points represent samples,
with colors denoting group membership.

Fig. S2: Dynamic distribution diagram of L. aurea metabolite content differences. Panels (A)-
(J) show pairwise comparisons: (A) GX vs HN, (B) GX vs JX, (C) GX vs Z], (D) HN vs JX, (E)
HN vs ZJ, (F) JX vs Z], (G) SC vs GX, (H) SC vs HN, (I) SC vs JX, and (J) SC vs Z]J. The
horizontal axis represents the cumulative number of substances arranged by difference
multiple, while the vertical axis shows the logarithm of the difference multiple (base 2). Each
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point represents a substance, with green points indicating the top 10 downgraded
substances and red points indicating the top 10 upgraded substances.

Fig. S3: Fold difference bar chart of L. aurea bulb metabolites. Panels (A)-(J) show pairwise
comparisons: (A) GX vs HN, (B) GX vs JX, (C) GX vs ZJ, (D) HN vs JX, (E) HN vs Z], (F)
JX vs 7], (G) SC vs GX, (H) SC vs HN, (I) SC vs JX, and (J) SC vs _Z]J. The horizontal axis
represents the logz of differential metabolite fold change (FC), and the vertical axis
represents the differential metabolites. Red bars indicate upregulated metabolites, while
green bars indicate downregulated metabolites.

Fig. S4: Heat map of L. aurea bulb metabolite classes. Panels (A)-(J) show pairwise
comparisons: (A) GX vs HN, (B) GX vs JX, (C) GX vs Z]J, (D) HN vs JX, (E) HN vs Z], (F)
JX vs Z], (G) SC vs GX, (H) SC vs HN, (I) SC vs JX, and (J) SC vs Z]. The horizontal axis
represents sample names, while the vertical axis shows differential metabolite information.
The Group indicates sample grouping and colors represent relative metabolite content after
standardization (red for high content, green for low content). Class refers to the first-level
classification of substances.

Fig. S5: K-Means plot of L. aurea bulbs differential metabolites. This analysis identified two
distinct clusters, with the standardized scores for clusters 1 and 2 presented in panels (A
and B). The horizontal axis represents the sample grouping, the vertical axis represents the
standardized relative content of metabolites, Sub class represents the metabolite category
number with the same change trend.

Fig. S6: Venn diagram of differences among groups of L. aurea bulbs metabolites. Panel A-E
shows ven diagram between different compared groups: (A) GX vs_Z], GX vs HN, SC vs GX,
and GX vs JX; (B) HN vs ZJ, GX vs HN, SC vs HN, and HN vs JX; (C) JX vs 7], GX vs JX,
SC vs JX, and HN vs JX; (D) JX vs Z], JX vs Z]J, SC vs ZJ, and HN vs ZJ; (E) SC vs Z],
SC vs HN, SC vs GX, and SC vs JX. Here, each circle in the figure represents a comparison
group. The numbers in the overlapping part of the circles represent the number of common
differential metabolites between the comparison groups, and the numbers without
overlapping parts represent the number of unique differential metabolites in the comparison
groups.

Fig. S7: Quantitation of L. aurea bulbs Gene Expression. (A) The box plot of expression where
the horizontal axis in the figure represents different samples; the vertical axis represents the
logarithmic value of the sample expression FPKM. This figure measures the expression level
of each sample from the perspective of the overall dispersion of the expression. (B) The
expression density distribution diagram where the curves of different colors in the figure
represent different samples. The horizontal axis of the points on the curve represents the
logarithmic value of the corresponding sample FPKM, and the vertical axis of the points
represents the probability density. (C) The violin plot of expression where different colors in
the figure represent different samples, and the width of each violin graph reflects the number
of transcripts at that expression level.

Fig. S8: Volcano plot of DEGs of L. aurea bulbs from different locations. Panels (A)-(J) show
pairwise comparisons: (A) GX vs HN, (B) GX vs JX, (C) GX vs Z], (D) HN vs JX, (E)
HN vs ZJ, (F) JX vs_Z], (G) SC vs GX, (H) SC vs HN, (I) SC vs JX, and (J) SC vs_Z]J. Here,
the horizontal axis represents the fold change of gene expression, and the vertical axis
represents the significance level of differentially expressed genes. Red dots represent
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upregulated differentially expressed genes, green dots represent down-regulated
differentially expressed genes, and gray dots represent non-differentially expressed genes.

Fig. S9: Radar charts depicting differentially expressed genes (DEGs) of L. aurea bulbs from
different locations. Panels (A)-(J) show pairwise comparisons: (A) GX vs HN, (B) GX vs JX,
(C) GX_vs_Z], (D) HN_vs JX, (E) HN vs_Z]J, (F) JX_vs_Z], (G) SC_vs_GX, (H) SC_vs_HN, (I)
SC vs JX, and (J) SC vs ZJ. Each point represents a gene, and its position on the chart
reflects the magnitude of the log2 fold change (log2FC) of the gene’s expression across the
two compared locations.

Fig. S10: Heatmap of differential gene clustering analysis for L. aurea bulbs from different
locations. Panels (A)-(J) show pairwise comparisons: (A) GX vs HN, (B) GX vs JX, (C)
GX vs 7], (D) HN vs JX, (E) HN vs ZJ, (F) JX vs Z], (G) SC vs GX, (H) SC vs HN, (I)
SC vs JX, and (J) SC vs ZJ. The horizontal axis shows sample names and hierarchical
clustering results, while the vertical axis represents differentially expressed genes with their
respective hierarchical clustering results. Red indicates high gene expression, and blue
indicates low gene expression.

Fig. S11: K-Means plot of L. aurea bulbs differential genes. Panels (A)-(J) show different
subclass: (A) Subclass 1, (B) Subclass 2, (C) Subclass 3, (D) Subclass 4, (E) Subclass 5, (F)
Subclass 6, (G) Subclass 7, (H) Subclass 8, (I) Subclass 9, and (J) Subclass 10. Here, the
horizontal axis represents the sample, and the vertical axis represents the standardized
expression level.

Fig. S12: Venn diagram of DEGs of L. aurea bulbs. Panels (A)-(E) show Ven diagram between
different sample comparisons: (A) GX vs Z]J, GX vs HN, SC vs GX, and GX vs JX; (B)
HN vs 7], GX vs HN, SC vs HN, and HN vs JX; (C) JX vs Z], GX vs JX, SC vs JX, and
HN vs JX; (D) JX vs ZJ, GX vs JX, SC vs 7], and HN vs ZJ; (E) SC vs ZJ, SC vs _HN,
SC vs GX, and SC vs JX. Here, the non-overlapping area of the Venn diagram represents
the differential genes unique to the differential grouping, and the overlapping area
represents the differential genes shared by several overlapping differential groups.

Fig. S13: Expression trend analysis in GX vs HN (A), SC vs JX (B), JX vs ZJ (C), and
SC vs Z] (D). Here, the dots and boxes in the figure represent metabolites and genes,
respectively. Red indicates upregulated genes/metabolites, green indicates down-regulated
genes/metabolites, and blue indicates both upregulated and down-regulated genes.

Fig. S14: KGML analysis network diagram of the gene and the metabolites to the pathway
between GX vs HN (A), SC vs JX (B), JX vs Z] (C), and SC vs Z]J (D). The squares in the
figure represent genes or gene products, circles represent metabolites, and diamonds
represent pathway names. Red indicates that genes, gene products, or metabolites are
upregulated, and green indicates that genes, gene products, or metabolites are
downregulated.

Fig. S15: CCA analysis of the gene and the metabolites to the KO00941 pathway in GX vs HN
(A), KO00940 pathway in SC vs JX (B), KO001110 pathway in JX vs ZJ (C), and KO00940
pathway in SC vs ZJ (D). The figure uses a cross to distinguish four regions. In the same
region, the farther from the origin, the closer the distance, and the higher the correlation.
Metabolites are marked purple, and genes are marked in red. If there are too many
substances of a certain type, they will be displayed as dots to avoid text overlapping.

7.2.Supplementary Tables
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Table S1: Metabolite quantity statistics

Table S2: Differentially Enriched Metabolites
Table S3: DEM KEGG summary

Table S4: Differentially Enriched Genes

Table S5: DEG KEGG summary

Table S6: Combined KEGG pathways

Table S7: Combined KEGG enrichment analysis
Table S8: Combined Correlation Analysis
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